Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281567102> ?p ?o ?g. }
- W4281567102 endingPage "1679" @default.
- W4281567102 startingPage "1669" @default.
- W4281567102 abstract "A detailed understanding of the reaction mechanism(s) leading to stereoselective product formation is crucial to understanding and predicting product formation and driving the development of new synthetic methodology. One way to improve our understanding of reaction mechanisms is to characterize the reaction intermediates involved in product formation. Because these intermediates are reactive, they are often unstable and therefore difficult to characterize using experimental techniques. For example, glycosylation reactions are critical steps in the chemical synthesis of oligosaccharides and need to be stereoselective to provide the desired α- or β-diastereomer. It remains challenging to predict and control the stereochemical outcome of glycosylation reactions, and their reaction mechanisms remain a hotly debated topic. In most cases, glycosylation reactions take place via reaction mechanisms in the continuum between SN1- and SN2-like pathways. SN2-like pathways proceeding via the displacement of a contact ion pair are relatively well understood because the reaction intermediates involved can be characterized by low-temperature NMR spectroscopy. In contrast, the SN1-like pathways proceeding via the solvent-separated ion pair, also known as the glycosyl cation, are poorly understood. SN1-like pathways are more challenging to investigate because the glycosyl cation intermediates involved are highly reactive. The highly reactive nature of glycosyl cations complicates their characterization because they have a short lifetime and rapidly equilibrate with the corresponding contact ion pair. To overcome this hurdle and enable the study of glycosyl cation stability and structure, they can be generated in a mass spectrometer in the absence of a solvent and counterion in the gas phase. The ease of formation, stability, and fragmentation of glycosyl cations have been studied using mass spectrometry (MS). However, MS alone provides little information about the structure of glycosyl cations. By combining mass spectrometry (MS) with infrared ion spectroscopy (IRIS), the determination of the gas-phase structures of glycosyl cations has been achieved. IRIS enables the recording of gas-phase infrared spectra of glycosyl cations, which can be assigned by matching to reference spectra predicted from quantum chemically calculated vibrational spectra. Here, we review the experimental setups that enable IRIS of glycosyl cations and discuss the various glycosyl cations that have been characterized to date. The structure of glycosyl cations depends on the relative configuration and structure of the monosaccharide substituents, which can influence the structure through both steric and electronic effects. The scope and relevance of gas-phase glycosyl cation structures in relation to their corresponding condensed-phase structures are also discussed. We expect that the workflow reviewed here to study glycosyl cation structure and reactivity can be extended to many other reaction types involving difficult-to-characterize ionic intermediates." @default.
- W4281567102 created "2022-05-27" @default.
- W4281567102 creator A5010850219 @default.
- W4281567102 creator A5011522205 @default.
- W4281567102 creator A5033114149 @default.
- W4281567102 creator A5041082429 @default.
- W4281567102 creator A5061494656 @default.
- W4281567102 creator A5068455024 @default.
- W4281567102 date "2022-05-26" @default.
- W4281567102 modified "2023-10-14" @default.
- W4281567102 title "Characterization of Elusive Reaction Intermediates Using Infrared Ion Spectroscopy: Application to the Experimental Characterization of Glycosyl Cations" @default.
- W4281567102 cites W1965986556 @default.
- W4281567102 cites W1966827185 @default.
- W4281567102 cites W1968391302 @default.
- W4281567102 cites W1971483422 @default.
- W4281567102 cites W1973588530 @default.
- W4281567102 cites W1985696834 @default.
- W4281567102 cites W1999519252 @default.
- W4281567102 cites W2002687196 @default.
- W4281567102 cites W2009152635 @default.
- W4281567102 cites W2028040703 @default.
- W4281567102 cites W2029605325 @default.
- W4281567102 cites W2031494714 @default.
- W4281567102 cites W2046971493 @default.
- W4281567102 cites W2055210083 @default.
- W4281567102 cites W2055731519 @default.
- W4281567102 cites W2059393896 @default.
- W4281567102 cites W2068339549 @default.
- W4281567102 cites W2082112990 @default.
- W4281567102 cites W2095925896 @default.
- W4281567102 cites W2108967153 @default.
- W4281567102 cites W2124227077 @default.
- W4281567102 cites W2147251683 @default.
- W4281567102 cites W2147466839 @default.
- W4281567102 cites W2148481005 @default.
- W4281567102 cites W2154912073 @default.
- W4281567102 cites W2155715825 @default.
- W4281567102 cites W2159728929 @default.
- W4281567102 cites W2256783395 @default.
- W4281567102 cites W2322579777 @default.
- W4281567102 cites W2332818933 @default.
- W4281567102 cites W2465846368 @default.
- W4281567102 cites W2616760174 @default.
- W4281567102 cites W2623773092 @default.
- W4281567102 cites W2755873892 @default.
- W4281567102 cites W2762757323 @default.
- W4281567102 cites W2765669739 @default.
- W4281567102 cites W2797395466 @default.
- W4281567102 cites W2801332558 @default.
- W4281567102 cites W2805738781 @default.
- W4281567102 cites W289360464 @default.
- W4281567102 cites W2894629617 @default.
- W4281567102 cites W2919118429 @default.
- W4281567102 cites W2919915229 @default.
- W4281567102 cites W2925051509 @default.
- W4281567102 cites W2941126075 @default.
- W4281567102 cites W2947940691 @default.
- W4281567102 cites W2953347000 @default.
- W4281567102 cites W2961283837 @default.
- W4281567102 cites W2968996898 @default.
- W4281567102 cites W2999871614 @default.
- W4281567102 cites W3004328161 @default.
- W4281567102 cites W3004550935 @default.
- W4281567102 cites W3032182572 @default.
- W4281567102 cites W3047162811 @default.
- W4281567102 cites W3114618044 @default.
- W4281567102 cites W3124617288 @default.
- W4281567102 cites W3198996924 @default.
- W4281567102 cites W3200246400 @default.
- W4281567102 cites W4200018449 @default.
- W4281567102 cites W4234908096 @default.
- W4281567102 cites W4243011860 @default.
- W4281567102 cites W4245229812 @default.
- W4281567102 cites W577681697 @default.
- W4281567102 doi "https://doi.org/10.1021/acs.accounts.2c00040" @default.
- W4281567102 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35616920" @default.
- W4281567102 hasPublicationYear "2022" @default.
- W4281567102 type Work @default.
- W4281567102 citedByCount "6" @default.
- W4281567102 countsByYear W42815671022022 @default.
- W4281567102 countsByYear W42815671022023 @default.
- W4281567102 crossrefType "journal-article" @default.
- W4281567102 hasAuthorship W4281567102A5010850219 @default.
- W4281567102 hasAuthorship W4281567102A5011522205 @default.
- W4281567102 hasAuthorship W4281567102A5033114149 @default.
- W4281567102 hasAuthorship W4281567102A5041082429 @default.
- W4281567102 hasAuthorship W4281567102A5061494656 @default.
- W4281567102 hasAuthorship W4281567102A5068455024 @default.
- W4281567102 hasBestOaLocation W42815671022 @default.
- W4281567102 hasConcept C105768512 @default.
- W4281567102 hasConcept C109057382 @default.
- W4281567102 hasConcept C147597530 @default.
- W4281567102 hasConcept C161790260 @default.
- W4281567102 hasConcept C178790620 @default.
- W4281567102 hasConcept C178907741 @default.
- W4281567102 hasConcept C181647583 @default.
- W4281567102 hasConcept C185592680 @default.
- W4281567102 hasConcept C192937433 @default.