Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281567124> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4281567124 endingPage "107656" @default.
- W4281567124 startingPage "107656" @default.
- W4281567124 abstract "Utilizing computer technology to realize ferrographic analysis and intelligent fault diagnosis technology is fundamental research to ensure the normal operation of precision, complex and severe marine mechanical equipment. This work is focused on the issues that affect the feature extraction and accuracy of the computer model, such as fuzzy edge and complex surface texture of wear particle image in ferrographic image. This research creatively establishes a new multi-channel image encoder, which artificially encodes the information of the original ferrographic image. The new encoding image includes the original channel information, artificial edge enhancement information, and artificial surface enhancement information, to improve the edge and surface features of the image. The encoder can not only improve the visible edge and surface characteristics of the picture but also form the MCECNN model after connecting to the convolutional neural network. The model can successfully improve the accuracy, convergence speed, generalization, and controllability of the model, to solve the problem of online intelligent recognition in the field of ferrography to the greatest extent." @default.
- W4281567124 created "2022-05-27" @default.
- W4281567124 creator A5082090752 @default.
- W4281567124 creator A5091328279 @default.
- W4281567124 date "2022-09-01" @default.
- W4281567124 modified "2023-10-10" @default.
- W4281567124 title "Research on controllable deep learning of multi-channel image coding technology in Ferrographic Image fault classification" @default.
- W4281567124 cites W1968242207 @default.
- W4281567124 cites W1977602933 @default.
- W4281567124 cites W1978136725 @default.
- W4281567124 cites W2009949016 @default.
- W4281567124 cites W2056525683 @default.
- W4281567124 cites W2062423474 @default.
- W4281567124 cites W2076973155 @default.
- W4281567124 cites W2106007420 @default.
- W4281567124 cites W2158108973 @default.
- W4281567124 cites W2626769426 @default.
- W4281567124 cites W2750552732 @default.
- W4281567124 cites W2946753127 @default.
- W4281567124 doi "https://doi.org/10.1016/j.triboint.2022.107656" @default.
- W4281567124 hasPublicationYear "2022" @default.
- W4281567124 type Work @default.
- W4281567124 citedByCount "3" @default.
- W4281567124 countsByYear W42815671242023 @default.
- W4281567124 crossrefType "journal-article" @default.
- W4281567124 hasAuthorship W4281567124A5082090752 @default.
- W4281567124 hasAuthorship W4281567124A5091328279 @default.
- W4281567124 hasConcept C111919701 @default.
- W4281567124 hasConcept C115961682 @default.
- W4281567124 hasConcept C118505674 @default.
- W4281567124 hasConcept C127162648 @default.
- W4281567124 hasConcept C127313418 @default.
- W4281567124 hasConcept C153180895 @default.
- W4281567124 hasConcept C154945302 @default.
- W4281567124 hasConcept C162307627 @default.
- W4281567124 hasConcept C165205528 @default.
- W4281567124 hasConcept C175551986 @default.
- W4281567124 hasConcept C193536780 @default.
- W4281567124 hasConcept C28826006 @default.
- W4281567124 hasConcept C31258907 @default.
- W4281567124 hasConcept C31972630 @default.
- W4281567124 hasConcept C33923547 @default.
- W4281567124 hasConcept C41008148 @default.
- W4281567124 hasConcept C48209547 @default.
- W4281567124 hasConcept C50644808 @default.
- W4281567124 hasConcept C52622490 @default.
- W4281567124 hasConcept C81363708 @default.
- W4281567124 hasConcept C9417928 @default.
- W4281567124 hasConceptScore W4281567124C111919701 @default.
- W4281567124 hasConceptScore W4281567124C115961682 @default.
- W4281567124 hasConceptScore W4281567124C118505674 @default.
- W4281567124 hasConceptScore W4281567124C127162648 @default.
- W4281567124 hasConceptScore W4281567124C127313418 @default.
- W4281567124 hasConceptScore W4281567124C153180895 @default.
- W4281567124 hasConceptScore W4281567124C154945302 @default.
- W4281567124 hasConceptScore W4281567124C162307627 @default.
- W4281567124 hasConceptScore W4281567124C165205528 @default.
- W4281567124 hasConceptScore W4281567124C175551986 @default.
- W4281567124 hasConceptScore W4281567124C193536780 @default.
- W4281567124 hasConceptScore W4281567124C28826006 @default.
- W4281567124 hasConceptScore W4281567124C31258907 @default.
- W4281567124 hasConceptScore W4281567124C31972630 @default.
- W4281567124 hasConceptScore W4281567124C33923547 @default.
- W4281567124 hasConceptScore W4281567124C41008148 @default.
- W4281567124 hasConceptScore W4281567124C48209547 @default.
- W4281567124 hasConceptScore W4281567124C50644808 @default.
- W4281567124 hasConceptScore W4281567124C52622490 @default.
- W4281567124 hasConceptScore W4281567124C81363708 @default.
- W4281567124 hasConceptScore W4281567124C9417928 @default.
- W4281567124 hasLocation W42815671241 @default.
- W4281567124 hasOpenAccess W4281567124 @default.
- W4281567124 hasPrimaryLocation W42815671241 @default.
- W4281567124 hasRelatedWork W17460865 @default.
- W4281567124 hasRelatedWork W2036697162 @default.
- W4281567124 hasRelatedWork W2332386680 @default.
- W4281567124 hasRelatedWork W2372578044 @default.
- W4281567124 hasRelatedWork W2542825942 @default.
- W4281567124 hasRelatedWork W2561315646 @default.
- W4281567124 hasRelatedWork W3201620972 @default.
- W4281567124 hasRelatedWork W4205698120 @default.
- W4281567124 hasRelatedWork W4239246781 @default.
- W4281567124 hasRelatedWork W2248621902 @default.
- W4281567124 hasVolume "173" @default.
- W4281567124 isParatext "false" @default.
- W4281567124 isRetracted "false" @default.
- W4281567124 workType "article" @default.