Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281569227> ?p ?o ?g. }
- W4281569227 abstract "Neuromarketing relies on Brain Computer Interface (BCI) technology to gain insight into how customers react to marketing stimuli. Marketers spend about $ 750 billion annually on traditional marketing camping. They use traditional marketing research procedures such as Personal Depth Interviews, Surveys, Focused Group Discussions, and so on, which are frequently criticized for failing to extract true consumer preferences. On the other hand, Neuromarketing promises to overcome such constraints. This work proposes a machine learning framework for predicting consumers' purchase intention (PI) and affective attitude (AA) from analyzing EEG signals. In this work, EEG signals are collected from 20 healthy participants while administering three advertising stimuli settings: product, endorsement, and promotion. After preprocessing, features are extracted in three domains (time, frequency, and time-frequency). Then, after selecting features using wrapper-based methods Recursive Feature Elimination, Support Vector Machine is used for categorizing positive and negative (AA and PI). The experimental results show that proposed framework achieves an accuracy of 84 and 87.00% for PI and AA ensuring the simulation of real-life results. In addition, AA and PI signals show N200 and N400 components when people tend to take decision after visualizing static advertisement. Moreover, negative AA signals shows more dispersion than positive AA signals. Furthermore, this work paves the way for implementing such a neuromarketing framework using consumer-grade EEG devices in a real-life setting. Therefore, it is evident that BCI-based neuromarketing technology can help brands and businesses effectively predict future consumer preferences. Hence, EEG-based neuromarketing technologies can assist brands and enterprizes in accurately forecasting future consumer preferences." @default.
- W4281569227 created "2022-05-27" @default.
- W4281569227 creator A5001440029 @default.
- W4281569227 creator A5014936844 @default.
- W4281569227 creator A5043916064 @default.
- W4281569227 creator A5056406172 @default.
- W4281569227 creator A5067873893 @default.
- W4281569227 creator A5085051533 @default.
- W4281569227 creator A5089702056 @default.
- W4281569227 date "2022-05-26" @default.
- W4281569227 modified "2023-10-14" @default.
- W4281569227 title "BCI-Based Consumers' Choice Prediction From EEG Signals: An Intelligent Neuromarketing Framework" @default.
- W4281569227 cites W1495472637 @default.
- W4281569227 cites W1529581252 @default.
- W4281569227 cites W1562703792 @default.
- W4281569227 cites W1839437067 @default.
- W4281569227 cites W1964694219 @default.
- W4281569227 cites W1976978656 @default.
- W4281569227 cites W1977115078 @default.
- W4281569227 cites W1987015068 @default.
- W4281569227 cites W2002597000 @default.
- W4281569227 cites W2005105933 @default.
- W4281569227 cites W2020089616 @default.
- W4281569227 cites W2029410598 @default.
- W4281569227 cites W2044628302 @default.
- W4281569227 cites W2047506651 @default.
- W4281569227 cites W2051626368 @default.
- W4281569227 cites W2056349259 @default.
- W4281569227 cites W2077611535 @default.
- W4281569227 cites W2081420711 @default.
- W4281569227 cites W2096267981 @default.
- W4281569227 cites W2096588881 @default.
- W4281569227 cites W2099921990 @default.
- W4281569227 cites W2101621996 @default.
- W4281569227 cites W2103291381 @default.
- W4281569227 cites W2107858022 @default.
- W4281569227 cites W2110119146 @default.
- W4281569227 cites W2120066913 @default.
- W4281569227 cites W2123649031 @default.
- W4281569227 cites W2128495200 @default.
- W4281569227 cites W2128838222 @default.
- W4281569227 cites W2133085034 @default.
- W4281569227 cites W2133105630 @default.
- W4281569227 cites W2141826465 @default.
- W4281569227 cites W2143426320 @default.
- W4281569227 cites W2153635508 @default.
- W4281569227 cites W2156332695 @default.
- W4281569227 cites W2169559282 @default.
- W4281569227 cites W2172206789 @default.
- W4281569227 cites W2174856159 @default.
- W4281569227 cites W2423195739 @default.
- W4281569227 cites W2516904419 @default.
- W4281569227 cites W2521218029 @default.
- W4281569227 cites W2595519346 @default.
- W4281569227 cites W2606700149 @default.
- W4281569227 cites W2608948620 @default.
- W4281569227 cites W2780586916 @default.
- W4281569227 cites W2788907250 @default.
- W4281569227 cites W2790123099 @default.
- W4281569227 cites W2804076277 @default.
- W4281569227 cites W2808391159 @default.
- W4281569227 cites W2897502782 @default.
- W4281569227 cites W2899707296 @default.
- W4281569227 cites W2942806832 @default.
- W4281569227 cites W2989917375 @default.
- W4281569227 cites W2999207022 @default.
- W4281569227 cites W3006715270 @default.
- W4281569227 cites W3016893795 @default.
- W4281569227 cites W3084858064 @default.
- W4281569227 cites W3087438817 @default.
- W4281569227 cites W3099225567 @default.
- W4281569227 cites W3120597241 @default.
- W4281569227 cites W3171177453 @default.
- W4281569227 cites W3211084592 @default.
- W4281569227 cites W4200579017 @default.
- W4281569227 cites W4249952394 @default.
- W4281569227 cites W4298352105 @default.
- W4281569227 doi "https://doi.org/10.3389/fnhum.2022.861270" @default.
- W4281569227 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35693537" @default.
- W4281569227 hasPublicationYear "2022" @default.
- W4281569227 type Work @default.
- W4281569227 citedByCount "6" @default.
- W4281569227 countsByYear W42815692272022 @default.
- W4281569227 countsByYear W42815692272023 @default.
- W4281569227 crossrefType "journal-article" @default.
- W4281569227 hasAuthorship W4281569227A5001440029 @default.
- W4281569227 hasAuthorship W4281569227A5014936844 @default.
- W4281569227 hasAuthorship W4281569227A5043916064 @default.
- W4281569227 hasAuthorship W4281569227A5056406172 @default.
- W4281569227 hasAuthorship W4281569227A5067873893 @default.
- W4281569227 hasAuthorship W4281569227A5085051533 @default.
- W4281569227 hasAuthorship W4281569227A5089702056 @default.
- W4281569227 hasBestOaLocation W42815692271 @default.
- W4281569227 hasConcept C107457646 @default.
- W4281569227 hasConcept C113843644 @default.
- W4281569227 hasConcept C119857082 @default.
- W4281569227 hasConcept C129307140 @default.
- W4281569227 hasConcept C144133560 @default.
- W4281569227 hasConcept C154945302 @default.
- W4281569227 hasConcept C15744967 @default.