Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281569609> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4281569609 endingPage "5370" @default.
- W4281569609 startingPage "5370" @default.
- W4281569609 abstract "Shadow cumulus clouds are widely distributed globally. They carry critical information to analyze environmental and climate changes. They can also shape the energy and water cycles of the global ecosystem at multiple scales by impacting solar radiation transfer and precipitation. Satellite images are an important source of cloud data. The accurate detection and segmentation of clouds is of great significance for climate and environmental monitoring. In this paper, we propose an improved MaskRCNN framework for the semantic segmentation of satellite images. We also explore two deep neural network architectures using auxiliary loss and feature fusion functions. We conduct comparative experiments on the dataset called “Understanding Clouds from Satellite Images”, sourced from the Kaggle competition. Compared to the baseline model, MaskRCNN, the mIoU of the CloudRCNN (auxiliary loss) model improves by 15.24%, and that of the CloudRCNN (feature fusion) model improves by 12.77%. More importantly, the two neural network architectures proposed in this paper can be widely applied to various semantic segmentation neural network models to improve the distinction between the foreground and the background." @default.
- W4281569609 created "2022-05-27" @default.
- W4281569609 creator A5031104193 @default.
- W4281569609 creator A5064645178 @default.
- W4281569609 date "2022-05-26" @default.
- W4281569609 modified "2023-10-05" @default.
- W4281569609 title "CloudRCNN: A Framework Based on Deep Neural Networks for Semantic Segmentation of Satellite Cloud Images" @default.
- W4281569609 cites W1878405005 @default.
- W4281569609 cites W2028191110 @default.
- W4281569609 cites W2109040335 @default.
- W4281569609 cites W2133059825 @default.
- W4281569609 cites W2326555679 @default.
- W4281569609 cites W2566143549 @default.
- W4281569609 cites W2585293115 @default.
- W4281569609 cites W2617083732 @default.
- W4281569609 cites W2733271701 @default.
- W4281569609 cites W2895165409 @default.
- W4281569609 cites W2938450871 @default.
- W4281569609 cites W2945778316 @default.
- W4281569609 cites W2953166477 @default.
- W4281569609 cites W2976131535 @default.
- W4281569609 cites W3011248632 @default.
- W4281569609 cites W3037957586 @default.
- W4281569609 cites W3098339701 @default.
- W4281569609 cites W3117453769 @default.
- W4281569609 cites W3147523217 @default.
- W4281569609 cites W3158412687 @default.
- W4281569609 cites W3173374491 @default.
- W4281569609 cites W3179013378 @default.
- W4281569609 cites W4225648146 @default.
- W4281569609 doi "https://doi.org/10.3390/app12115370" @default.
- W4281569609 hasPublicationYear "2022" @default.
- W4281569609 type Work @default.
- W4281569609 citedByCount "2" @default.
- W4281569609 countsByYear W42815696092023 @default.
- W4281569609 crossrefType "journal-article" @default.
- W4281569609 hasAuthorship W4281569609A5031104193 @default.
- W4281569609 hasAuthorship W4281569609A5064645178 @default.
- W4281569609 hasBestOaLocation W42815696091 @default.
- W4281569609 hasConcept C111919701 @default.
- W4281569609 hasConcept C117797892 @default.
- W4281569609 hasConcept C124504099 @default.
- W4281569609 hasConcept C127413603 @default.
- W4281569609 hasConcept C146978453 @default.
- W4281569609 hasConcept C154945302 @default.
- W4281569609 hasConcept C15744967 @default.
- W4281569609 hasConcept C19269812 @default.
- W4281569609 hasConcept C205649164 @default.
- W4281569609 hasConcept C2778102629 @default.
- W4281569609 hasConcept C41008148 @default.
- W4281569609 hasConcept C50644808 @default.
- W4281569609 hasConcept C542102704 @default.
- W4281569609 hasConcept C62649853 @default.
- W4281569609 hasConcept C79974875 @default.
- W4281569609 hasConcept C89600930 @default.
- W4281569609 hasConceptScore W4281569609C111919701 @default.
- W4281569609 hasConceptScore W4281569609C117797892 @default.
- W4281569609 hasConceptScore W4281569609C124504099 @default.
- W4281569609 hasConceptScore W4281569609C127413603 @default.
- W4281569609 hasConceptScore W4281569609C146978453 @default.
- W4281569609 hasConceptScore W4281569609C154945302 @default.
- W4281569609 hasConceptScore W4281569609C15744967 @default.
- W4281569609 hasConceptScore W4281569609C19269812 @default.
- W4281569609 hasConceptScore W4281569609C205649164 @default.
- W4281569609 hasConceptScore W4281569609C2778102629 @default.
- W4281569609 hasConceptScore W4281569609C41008148 @default.
- W4281569609 hasConceptScore W4281569609C50644808 @default.
- W4281569609 hasConceptScore W4281569609C542102704 @default.
- W4281569609 hasConceptScore W4281569609C62649853 @default.
- W4281569609 hasConceptScore W4281569609C79974875 @default.
- W4281569609 hasConceptScore W4281569609C89600930 @default.
- W4281569609 hasIssue "11" @default.
- W4281569609 hasLocation W42815696091 @default.
- W4281569609 hasOpenAccess W4281569609 @default.
- W4281569609 hasPrimaryLocation W42815696091 @default.
- W4281569609 hasRelatedWork W134976887 @default.
- W4281569609 hasRelatedWork W1582206143 @default.
- W4281569609 hasRelatedWork W2052361277 @default.
- W4281569609 hasRelatedWork W2057962381 @default.
- W4281569609 hasRelatedWork W2138214894 @default.
- W4281569609 hasRelatedWork W2464972745 @default.
- W4281569609 hasRelatedWork W2734888972 @default.
- W4281569609 hasRelatedWork W3027394838 @default.
- W4281569609 hasRelatedWork W3161321444 @default.
- W4281569609 hasRelatedWork W4376624981 @default.
- W4281569609 hasVolume "12" @default.
- W4281569609 isParatext "false" @default.
- W4281569609 isRetracted "false" @default.
- W4281569609 workType "article" @default.