Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281569654> ?p ?o ?g. }
- W4281569654 abstract "Abstract Delaying intubation for patients failing Bi-Level Positive Airway Pressure (BIPAP) may be associated with harm. The objective of this study was to develop a deep learning model capable of aiding clinical decision making by predicting Bi-Level Positive Airway Pressure (BIPAP) failure. This was a retrospective cohort study in a tertiary pediatric intensive care unit (PICU) between 2010 and 2020. Three machine learning models were developed to predict BIPAP failure: two logistic regression models and one deep learning model, a recurrent neural network with a Long Short-Term Memory (LSTM-RNN) architecture. Model performance was evaluated in a holdout test set. 175 (27.7%) of 630 total BIPAP sessions were BIPAP failures. Patients in the BIPAP failure group were on BIPAP for a median of 32.8 (9.2–91.3) hours prior to intubation. Late BIPAP failure (intubation after using BIPAP > 24 h) patients had fewer 28-day Ventilator Free Days (13.40 [0.68–20.96]), longer ICU length of stay and more post-extubation BIPAP days compared to those who were intubated ≤ 24 h from BIPAP initiation. An AUROC above 0.5 indicates that a model has extracted new information, potentially valuable to the clinical team, about BIPAP failure. Within 6 h of BIPAP initiation, the LSTM-RNN model predicted which patients were likely to fail BIPAP with an AUROC of 0.81 (0.80, 0.82), superior to all other models. Within 6 h of BIPAP initiation, the LSTM-RNN model would identify nearly 80% of BIPAP failures with a 50% false alarm rate, equal to an NNA of 2. In conclusion, a deep learning method using readily available data from the electronic health record can identify which patients on BIPAP are likely to fail with good discrimination, oftentimes days before they are intubated in usual practice." @default.
- W4281569654 created "2022-05-27" @default.
- W4281569654 creator A5016479626 @default.
- W4281569654 creator A5037209289 @default.
- W4281569654 creator A5040209915 @default.
- W4281569654 creator A5041958655 @default.
- W4281569654 creator A5042840323 @default.
- W4281569654 creator A5085020072 @default.
- W4281569654 date "2022-05-26" @default.
- W4281569654 modified "2023-10-16" @default.
- W4281569654 title "Development of a deep learning model that predicts Bi-level positive airway pressure failure" @default.
- W4281569654 cites W1606050377 @default.
- W4281569654 cites W2004914971 @default.
- W4281569654 cites W2031651341 @default.
- W4281569654 cites W2033298901 @default.
- W4281569654 cites W2041468256 @default.
- W4281569654 cites W2061366742 @default.
- W4281569654 cites W2072110553 @default.
- W4281569654 cites W2084445380 @default.
- W4281569654 cites W2095960954 @default.
- W4281569654 cites W2102335613 @default.
- W4281569654 cites W2120371872 @default.
- W4281569654 cites W2132217523 @default.
- W4281569654 cites W2137908269 @default.
- W4281569654 cites W2174328392 @default.
- W4281569654 cites W2209690763 @default.
- W4281569654 cites W2297558687 @default.
- W4281569654 cites W2519293880 @default.
- W4281569654 cites W2536303762 @default.
- W4281569654 cites W2547411308 @default.
- W4281569654 cites W2625712745 @default.
- W4281569654 cites W2802512800 @default.
- W4281569654 cites W2803516046 @default.
- W4281569654 cites W2838748090 @default.
- W4281569654 cites W2897603516 @default.
- W4281569654 cites W2919115771 @default.
- W4281569654 cites W2923641697 @default.
- W4281569654 cites W2943193432 @default.
- W4281569654 cites W2943492071 @default.
- W4281569654 cites W2973055803 @default.
- W4281569654 cites W2993707715 @default.
- W4281569654 cites W2996200111 @default.
- W4281569654 cites W3003780672 @default.
- W4281569654 cites W3016032135 @default.
- W4281569654 cites W3020183443 @default.
- W4281569654 cites W3036339803 @default.
- W4281569654 cites W3132935332 @default.
- W4281569654 cites W3135081584 @default.
- W4281569654 cites W3182509611 @default.
- W4281569654 cites W4206287266 @default.
- W4281569654 cites W601634912 @default.
- W4281569654 doi "https://doi.org/10.1038/s41598-022-12984-x" @default.
- W4281569654 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35618738" @default.
- W4281569654 hasPublicationYear "2022" @default.
- W4281569654 type Work @default.
- W4281569654 citedByCount "1" @default.
- W4281569654 countsByYear W42815696542023 @default.
- W4281569654 crossrefType "journal-article" @default.
- W4281569654 hasAuthorship W4281569654A5016479626 @default.
- W4281569654 hasAuthorship W4281569654A5037209289 @default.
- W4281569654 hasAuthorship W4281569654A5040209915 @default.
- W4281569654 hasAuthorship W4281569654A5041958655 @default.
- W4281569654 hasAuthorship W4281569654A5042840323 @default.
- W4281569654 hasAuthorship W4281569654A5085020072 @default.
- W4281569654 hasBestOaLocation W42815696541 @default.
- W4281569654 hasConcept C141071460 @default.
- W4281569654 hasConcept C167135981 @default.
- W4281569654 hasConcept C194828623 @default.
- W4281569654 hasConcept C2775867611 @default.
- W4281569654 hasConcept C2776006263 @default.
- W4281569654 hasConcept C2778716859 @default.
- W4281569654 hasConcept C42219234 @default.
- W4281569654 hasConcept C71924100 @default.
- W4281569654 hasConceptScore W4281569654C141071460 @default.
- W4281569654 hasConceptScore W4281569654C167135981 @default.
- W4281569654 hasConceptScore W4281569654C194828623 @default.
- W4281569654 hasConceptScore W4281569654C2775867611 @default.
- W4281569654 hasConceptScore W4281569654C2776006263 @default.
- W4281569654 hasConceptScore W4281569654C2778716859 @default.
- W4281569654 hasConceptScore W4281569654C42219234 @default.
- W4281569654 hasConceptScore W4281569654C71924100 @default.
- W4281569654 hasFunder F4320311599 @default.
- W4281569654 hasIssue "1" @default.
- W4281569654 hasLocation W42815696541 @default.
- W4281569654 hasLocation W42815696542 @default.
- W4281569654 hasLocation W42815696543 @default.
- W4281569654 hasOpenAccess W4281569654 @default.
- W4281569654 hasPrimaryLocation W42815696541 @default.
- W4281569654 hasRelatedWork W146073276 @default.
- W4281569654 hasRelatedWork W1973501587 @default.
- W4281569654 hasRelatedWork W2055102237 @default.
- W4281569654 hasRelatedWork W2101461165 @default.
- W4281569654 hasRelatedWork W2140315134 @default.
- W4281569654 hasRelatedWork W2183423447 @default.
- W4281569654 hasRelatedWork W2257726678 @default.
- W4281569654 hasRelatedWork W2366973680 @default.
- W4281569654 hasRelatedWork W2767722680 @default.
- W4281569654 hasRelatedWork W2794672651 @default.
- W4281569654 hasVolume "12" @default.
- W4281569654 isParatext "false" @default.