Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281570207> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4281570207 endingPage "124560" @default.
- W4281570207 startingPage "124560" @default.
- W4281570207 abstract "Chemical kinetic modeling is an integral part of combustion simulation, and extensive efforts have been devoted to developing high-fidelity yet computationally affordable models. Despite these efforts, modeling combustion kinetics is still challenging due to the demand for expert knowledge and high dimensional optimization against experiments. Therefore, data-driven approaches that enable efficient discovery and calibration of kinetic models have received much attention in recent years, the core of which is the high-dimensional optimization based on big data. Evolutionary algorithms are usually adopted for optimizing chemical kinetic models, although they usually suffer from high computational costs and are limited to a small number of parameters. Meanwhile, gradient-based optimizations, especially the stochastic gradient descent (SGD) methods, have shown success in developing complex models by training large-scale deep learning models. Therefore, this work explores the applications of SGD-based optimizations in tuning mechanistic kinetic models and learning hybrid kinetic models. We first showed that SGD-based optimizations could substantially save computational cost compared to evolutionary algorithms when the number of kinetic parameters in mechanistic models reached about one hundred. We then demonstrated that the SGD-based optimization enabled us to use a neural network model to represent the pyrolysis of the Hybrid Chemistry and optimize the associated hundreds of weights in the neural network. These proof-of-concept studies showed that the SGD-based optimization is more efficient than evolutionary algorithms, is a promising approach for developing chemical kinetic models with high dimensional parameters, and is capable of developing hybrid mechanistic-machine learning kinetic models. • Demonstrate SGD-based optimization in optimizing hundreds of kinetic parameters in mechanistic models. • Show SGD-based optimization can significantly reduce computational cost from days to hours. • Enable learning hybrid neural network/mechanistic kinetic models." @default.
- W4281570207 created "2022-05-27" @default.
- W4281570207 creator A5021349170 @default.
- W4281570207 creator A5043537937 @default.
- W4281570207 creator A5065718414 @default.
- W4281570207 creator A5072417331 @default.
- W4281570207 creator A5073214484 @default.
- W4281570207 creator A5083442506 @default.
- W4281570207 date "2022-09-01" @default.
- W4281570207 modified "2023-10-18" @default.
- W4281570207 title "SGD-based optimization in modeling combustion kinetics: Case studies in tuning mechanistic and hybrid kinetic models" @default.
- W4281570207 cites W2003390935 @default.
- W4281570207 cites W2005928052 @default.
- W4281570207 cites W2026563867 @default.
- W4281570207 cites W2046100676 @default.
- W4281570207 cites W2076611253 @default.
- W4281570207 cites W2089835786 @default.
- W4281570207 cites W2121092916 @default.
- W4281570207 cites W2124755620 @default.
- W4281570207 cites W2156163658 @default.
- W4281570207 cites W2392295588 @default.
- W4281570207 cites W2619381903 @default.
- W4281570207 cites W2779599852 @default.
- W4281570207 cites W2808938011 @default.
- W4281570207 cites W2825036749 @default.
- W4281570207 cites W2884318381 @default.
- W4281570207 cites W2890526789 @default.
- W4281570207 cites W2899283552 @default.
- W4281570207 cites W2906362494 @default.
- W4281570207 cites W2970748133 @default.
- W4281570207 cites W2981083815 @default.
- W4281570207 cites W3007609684 @default.
- W4281570207 cites W3097157700 @default.
- W4281570207 cites W3135210114 @default.
- W4281570207 cites W3143255989 @default.
- W4281570207 cites W3163993681 @default.
- W4281570207 cites W3197694049 @default.
- W4281570207 doi "https://doi.org/10.1016/j.fuel.2022.124560" @default.
- W4281570207 hasPublicationYear "2022" @default.
- W4281570207 type Work @default.
- W4281570207 citedByCount "8" @default.
- W4281570207 countsByYear W42815702072022 @default.
- W4281570207 countsByYear W42815702072023 @default.
- W4281570207 crossrefType "journal-article" @default.
- W4281570207 hasAuthorship W4281570207A5021349170 @default.
- W4281570207 hasAuthorship W4281570207A5043537937 @default.
- W4281570207 hasAuthorship W4281570207A5065718414 @default.
- W4281570207 hasAuthorship W4281570207A5072417331 @default.
- W4281570207 hasAuthorship W4281570207A5073214484 @default.
- W4281570207 hasAuthorship W4281570207A5083442506 @default.
- W4281570207 hasConcept C105923489 @default.
- W4281570207 hasConcept C121332964 @default.
- W4281570207 hasConcept C127413603 @default.
- W4281570207 hasConcept C135889238 @default.
- W4281570207 hasConcept C147789679 @default.
- W4281570207 hasConcept C148898269 @default.
- W4281570207 hasConcept C183696295 @default.
- W4281570207 hasConcept C185592680 @default.
- W4281570207 hasConcept C74650414 @default.
- W4281570207 hasConcept C97355855 @default.
- W4281570207 hasConceptScore W4281570207C105923489 @default.
- W4281570207 hasConceptScore W4281570207C121332964 @default.
- W4281570207 hasConceptScore W4281570207C127413603 @default.
- W4281570207 hasConceptScore W4281570207C135889238 @default.
- W4281570207 hasConceptScore W4281570207C147789679 @default.
- W4281570207 hasConceptScore W4281570207C148898269 @default.
- W4281570207 hasConceptScore W4281570207C183696295 @default.
- W4281570207 hasConceptScore W4281570207C185592680 @default.
- W4281570207 hasConceptScore W4281570207C74650414 @default.
- W4281570207 hasConceptScore W4281570207C97355855 @default.
- W4281570207 hasLocation W42815702071 @default.
- W4281570207 hasOpenAccess W4281570207 @default.
- W4281570207 hasPrimaryLocation W42815702071 @default.
- W4281570207 hasRelatedWork W1996521394 @default.
- W4281570207 hasRelatedWork W2026768347 @default.
- W4281570207 hasRelatedWork W2059265220 @default.
- W4281570207 hasRelatedWork W2088431388 @default.
- W4281570207 hasRelatedWork W2951104772 @default.
- W4281570207 hasRelatedWork W2952110918 @default.
- W4281570207 hasRelatedWork W3005003046 @default.
- W4281570207 hasRelatedWork W3138279926 @default.
- W4281570207 hasRelatedWork W2508177604 @default.
- W4281570207 hasRelatedWork W2521883233 @default.
- W4281570207 hasVolume "324" @default.
- W4281570207 isParatext "false" @default.
- W4281570207 isRetracted "false" @default.
- W4281570207 workType "article" @default.