Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281570310> ?p ?o ?g. }
- W4281570310 endingPage "100006" @default.
- W4281570310 startingPage "100006" @default.
- W4281570310 abstract "Corporate financial distress prediction is a pivotal aspect of economic development. The ability to foretell that a company will be getting into financial distress is essential for decision-makers, shareholders, and policymakers in making the best decisions and policies for sustainable development. Prediction accuracy is of paramount importance in the implementation of distress mitigation measures, a critical component attracting investment in particular to most of the developing countries in Africa. The advent of the fourth industrial revolution saw Artificial Intelligence (AI) taking centre stage in financial risk modelling. This growth has however not precluded the role of traditional statistical methods in modelling financial risk. There is a lack of consensus amongst academia and practitioners on the accuracy of these two groups of methodologies in distress prediction. Protagonists of the conventional school of thought still hold on to statistical methods being more accurate whilst the new age proponents believe AI has brought in higher levels of predictive strength and model accuracy. This study seeks to compare the accuracy of Logit and Artificial Neural Networks (ANN) in corporate distress prediction. The two modelling techniques were applied to an 8-year panel dataset from the Zimbabwe Stock Exchange. The Logit model outperformed the ANN by an overall accuracy of 92.21% compared to ANN with 85.8%. Heightened prediction accuracy is bound to improve the return to shareholders by enhancing financial risk management within emerging markets. This study also seeks to contribute to the ongoing debate on the superiority between AI techniques and statistical techniques." @default.
- W4281570310 created "2022-05-27" @default.
- W4281570310 creator A5078342135 @default.
- W4281570310 creator A5078357491 @default.
- W4281570310 date "2022-01-01" @default.
- W4281570310 modified "2023-09-30" @default.
- W4281570310 title "On logit and artificial neural networks in corporate distress modelling for Zimbabwe listed corporates" @default.
- W4281570310 cites W1657742470 @default.
- W4281570310 cites W1995709138 @default.
- W4281570310 cites W2000036139 @default.
- W4281570310 cites W2017988846 @default.
- W4281570310 cites W2020848494 @default.
- W4281570310 cites W2041255922 @default.
- W4281570310 cites W2048801439 @default.
- W4281570310 cites W2064031858 @default.
- W4281570310 cites W2070188654 @default.
- W4281570310 cites W2072768981 @default.
- W4281570310 cites W2291034518 @default.
- W4281570310 cites W2305449823 @default.
- W4281570310 cites W2588836480 @default.
- W4281570310 cites W2606916050 @default.
- W4281570310 cites W2735337297 @default.
- W4281570310 cites W2794309410 @default.
- W4281570310 cites W2928557426 @default.
- W4281570310 cites W2951517116 @default.
- W4281570310 cites W2980298564 @default.
- W4281570310 cites W2993384715 @default.
- W4281570310 cites W2997475904 @default.
- W4281570310 cites W3013529556 @default.
- W4281570310 cites W3092986714 @default.
- W4281570310 cites W3153784433 @default.
- W4281570310 cites W3159429303 @default.
- W4281570310 cites W3176368795 @default.
- W4281570310 cites W3188549859 @default.
- W4281570310 cites W3213922643 @default.
- W4281570310 cites W3214597067 @default.
- W4281570310 doi "https://doi.org/10.1016/j.samod.2022.100006" @default.
- W4281570310 hasPublicationYear "2022" @default.
- W4281570310 type Work @default.
- W4281570310 citedByCount "1" @default.
- W4281570310 countsByYear W42815703102023 @default.
- W4281570310 crossrefType "journal-article" @default.
- W4281570310 hasAuthorship W4281570310A5078342135 @default.
- W4281570310 hasAuthorship W4281570310A5078357491 @default.
- W4281570310 hasBestOaLocation W42815703101 @default.
- W4281570310 hasConcept C10138342 @default.
- W4281570310 hasConcept C119857082 @default.
- W4281570310 hasConcept C120757647 @default.
- W4281570310 hasConcept C139265228 @default.
- W4281570310 hasConcept C140331021 @default.
- W4281570310 hasConcept C144133560 @default.
- W4281570310 hasConcept C151956035 @default.
- W4281570310 hasConcept C154945302 @default.
- W4281570310 hasConcept C15744967 @default.
- W4281570310 hasConcept C162118730 @default.
- W4281570310 hasConcept C162324750 @default.
- W4281570310 hasConcept C200870193 @default.
- W4281570310 hasConcept C2984760201 @default.
- W4281570310 hasConcept C39389867 @default.
- W4281570310 hasConcept C41008148 @default.
- W4281570310 hasConcept C45804977 @default.
- W4281570310 hasConcept C50644808 @default.
- W4281570310 hasConcept C542102704 @default.
- W4281570310 hasConcept C73283319 @default.
- W4281570310 hasConceptScore W4281570310C10138342 @default.
- W4281570310 hasConceptScore W4281570310C119857082 @default.
- W4281570310 hasConceptScore W4281570310C120757647 @default.
- W4281570310 hasConceptScore W4281570310C139265228 @default.
- W4281570310 hasConceptScore W4281570310C140331021 @default.
- W4281570310 hasConceptScore W4281570310C144133560 @default.
- W4281570310 hasConceptScore W4281570310C151956035 @default.
- W4281570310 hasConceptScore W4281570310C154945302 @default.
- W4281570310 hasConceptScore W4281570310C15744967 @default.
- W4281570310 hasConceptScore W4281570310C162118730 @default.
- W4281570310 hasConceptScore W4281570310C162324750 @default.
- W4281570310 hasConceptScore W4281570310C200870193 @default.
- W4281570310 hasConceptScore W4281570310C2984760201 @default.
- W4281570310 hasConceptScore W4281570310C39389867 @default.
- W4281570310 hasConceptScore W4281570310C41008148 @default.
- W4281570310 hasConceptScore W4281570310C45804977 @default.
- W4281570310 hasConceptScore W4281570310C50644808 @default.
- W4281570310 hasConceptScore W4281570310C542102704 @default.
- W4281570310 hasConceptScore W4281570310C73283319 @default.
- W4281570310 hasLocation W42815703101 @default.
- W4281570310 hasOpenAccess W4281570310 @default.
- W4281570310 hasPrimaryLocation W42815703101 @default.
- W4281570310 hasRelatedWork W2154812988 @default.
- W4281570310 hasRelatedWork W2335480727 @default.
- W4281570310 hasRelatedWork W2366058331 @default.
- W4281570310 hasRelatedWork W2368843981 @default.
- W4281570310 hasRelatedWork W2583115960 @default.
- W4281570310 hasRelatedWork W2807400484 @default.
- W4281570310 hasRelatedWork W2940039577 @default.
- W4281570310 hasRelatedWork W2952314657 @default.
- W4281570310 hasRelatedWork W4224231419 @default.
- W4281570310 hasRelatedWork W4319312729 @default.
- W4281570310 hasVolume "2" @default.
- W4281570310 isParatext "false" @default.