Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281571347> ?p ?o ?g. }
- W4281571347 endingPage "3545" @default.
- W4281571347 startingPage "3531" @default.
- W4281571347 abstract "<p indent=0mm>In the 5G era, the effective thermal management has become more demanding due to the ever-rising integration of electronic devices. High thermal conductivity materials play a crucial role in the field of thermal management, for example, thermal interface materials (TIMs) are used to fill the gap between the electronic chip and the heat sink to improve thermal transfer. In recent years, polymers have become a popular choice for thermal conductive materials because of their light, economical and excellent insulation and processability. To improve the thermal conductivity of materials, inorganic fillers with high thermal conductivity are generally composited with polymers. With the merits of high thermal conductivity, desirable chemical stability, carbon nanotubes (CNTs) are considered to have broad application potential in thermal conductive composites. Simple composition methods failed to increase thermal conductivity of composite materials to expected levels due to the large interfacial thermal resistance between CNTs and polymers and the disorderly distribution of CNTs in polymers. Therefore, reasonable design of polymer composites filled with CNTs is the key to achieving high thermal conductivity. This review mainly introduces the application of CNTs in thermal conductive polymer composites. Based on the existing theoretical research on thermal conductivity of composites and the application of molecular dynamics, more feasible strategies for improving the thermal conductivity of polymer composites filled with CNTs have been proposed. The approaches that improve the thermal conductivity of composites are mainly introduced from three aspects. (1) The intrinsic thermal conductivity of CNTs is an important factor affecting the thermal conductivity of polymer-based composites. CNTs and their macroscopic bulk materials both have excellent thermal conductivity. However, the thermal conductivity test results of the macroscopic materials of CNTs (such as CNTs fibers, arrays, and films) showed that the thermal conductivity of the macroscopic materials of CNTs was much smaller than that of single CNTs due to impurities, defects and inter-tube contact thermal resistance. Studies have shown that purification of CNTs and reduction of intertubular contact thermal resistance can improve the intrinsic thermal conductivity of CNTs. (2) From a microscopic perspective, phonons, the quantized energy of lattice vibration, are the main mechanism of heat conduction in most carbon fillers and polymers. Phonon scattering occurs in the process of phonon transfer, including the scattering between phonons and the scattering at the interface caused by defects and impurities, resulting in thermal resistance. The bonding strength of fillers and polymer interfaces are the crucial factors affecting the transmission of phonons. Hence, the thermal conductivity of composites could be effectively enhanced by surface treatment of CNTs, including covalent functionalization and non-covalent functionalization. Studies have shown that the functionalization can enhance the interfacial interaction between CNTs and polymers, while improving the dispersion of CNTs in polymers. (3) According to the thermal conduction network theory, the key to improving the thermal conductivity is whether the fillers can form a large number of continuous thermal conduction paths in the polymers and maintain a stable existence. However, high CNTs content usually affects the comprehensive properties of composites. To solve this problem, the arrangement and distribution of CNTs in the polymer should be improved to construct more heat conduction pathways, which can achieve high thermal conductivity at a low filling content. Here we introduce some effective methods, including the synergy effect, field orientation and the construction of 3D network structures. In this review, the characteristics and improvement effects of different technical approaches are summarized, which provides a reference for the research and application of CNT-filled polymer-based composites with high thermal conductivity. Finally, the future development prospects of carbon nanomaterial-filled polymer composites are discussed from perspectives of theoretical research, experimental design and engineering application." @default.
- W4281571347 created "2022-05-27" @default.
- W4281571347 creator A5018126522 @default.
- W4281571347 creator A5024374027 @default.
- W4281571347 creator A5047640078 @default.
- W4281571347 creator A5062284542 @default.
- W4281571347 date "2022-05-26" @default.
- W4281571347 modified "2023-10-16" @default.
- W4281571347 title "Progress on carbon nanotube filled polymer-based thermal conductive composites" @default.
- W4281571347 cites W1982193100 @default.
- W4281571347 cites W1992471220 @default.
- W4281571347 cites W1992493862 @default.
- W4281571347 cites W2009404381 @default.
- W4281571347 cites W2033436626 @default.
- W4281571347 cites W2047781445 @default.
- W4281571347 cites W2049458265 @default.
- W4281571347 cites W2049945594 @default.
- W4281571347 cites W2057626905 @default.
- W4281571347 cites W2058274078 @default.
- W4281571347 cites W2058660567 @default.
- W4281571347 cites W2064779937 @default.
- W4281571347 cites W2084252829 @default.
- W4281571347 cites W2107473852 @default.
- W4281571347 cites W2144300255 @default.
- W4281571347 cites W2156111849 @default.
- W4281571347 cites W2210958799 @default.
- W4281571347 cites W2219875272 @default.
- W4281571347 cites W2275291068 @default.
- W4281571347 cites W2409923234 @default.
- W4281571347 cites W2517558979 @default.
- W4281571347 cites W2584003373 @default.
- W4281571347 cites W2586494681 @default.
- W4281571347 cites W2593168233 @default.
- W4281571347 cites W2764125048 @default.
- W4281571347 cites W2766821081 @default.
- W4281571347 cites W2791192341 @default.
- W4281571347 cites W2791799969 @default.
- W4281571347 cites W2792577655 @default.
- W4281571347 cites W2799836144 @default.
- W4281571347 cites W2800510875 @default.
- W4281571347 cites W2802861673 @default.
- W4281571347 cites W2809915701 @default.
- W4281571347 cites W2819167431 @default.
- W4281571347 cites W2889423877 @default.
- W4281571347 cites W2890315739 @default.
- W4281571347 cites W2892211999 @default.
- W4281571347 cites W2895283928 @default.
- W4281571347 cites W2898444264 @default.
- W4281571347 cites W2905887462 @default.
- W4281571347 cites W2911021875 @default.
- W4281571347 cites W2918240178 @default.
- W4281571347 cites W2939790942 @default.
- W4281571347 cites W2963909807 @default.
- W4281571347 cites W2980958022 @default.
- W4281571347 cites W2989424106 @default.
- W4281571347 cites W2996536383 @default.
- W4281571347 cites W2999586215 @default.
- W4281571347 cites W3000929779 @default.
- W4281571347 cites W3010057468 @default.
- W4281571347 cites W3048406770 @default.
- W4281571347 cites W3048449103 @default.
- W4281571347 cites W3082447333 @default.
- W4281571347 cites W3084760241 @default.
- W4281571347 cites W3093795698 @default.
- W4281571347 cites W3119291938 @default.
- W4281571347 cites W3123921242 @default.
- W4281571347 cites W3138857871 @default.
- W4281571347 cites W3176760301 @default.
- W4281571347 cites W3183352357 @default.
- W4281571347 doi "https://doi.org/10.1360/tb-2022-0318" @default.
- W4281571347 hasPublicationYear "2022" @default.
- W4281571347 type Work @default.
- W4281571347 citedByCount "1" @default.
- W4281571347 countsByYear W42815713472022 @default.
- W4281571347 crossrefType "journal-article" @default.
- W4281571347 hasAuthorship W4281571347A5018126522 @default.
- W4281571347 hasAuthorship W4281571347A5024374027 @default.
- W4281571347 hasAuthorship W4281571347A5047640078 @default.
- W4281571347 hasAuthorship W4281571347A5062284542 @default.
- W4281571347 hasConcept C121332964 @default.
- W4281571347 hasConcept C153294291 @default.
- W4281571347 hasConcept C159985019 @default.
- W4281571347 hasConcept C186801447 @default.
- W4281571347 hasConcept C192562407 @default.
- W4281571347 hasConcept C202374169 @default.
- W4281571347 hasConcept C204530211 @default.
- W4281571347 hasConcept C2777619693 @default.
- W4281571347 hasConcept C513720949 @default.
- W4281571347 hasConcept C521977710 @default.
- W4281571347 hasConceptScore W4281571347C121332964 @default.
- W4281571347 hasConceptScore W4281571347C153294291 @default.
- W4281571347 hasConceptScore W4281571347C159985019 @default.
- W4281571347 hasConceptScore W4281571347C186801447 @default.
- W4281571347 hasConceptScore W4281571347C192562407 @default.
- W4281571347 hasConceptScore W4281571347C202374169 @default.
- W4281571347 hasConceptScore W4281571347C204530211 @default.
- W4281571347 hasConceptScore W4281571347C2777619693 @default.
- W4281571347 hasConceptScore W4281571347C513720949 @default.