Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281612334> ?p ?o ?g. }
- W4281612334 endingPage "115835" @default.
- W4281612334 startingPage "115835" @default.
- W4281612334 abstract "• The method of ANN combined with FEM was an effective complementary detection technique, the appropriate activation function in the design was chosen. • An innovative ANN have a good prediction in the constitutive model. The accuracy of ANN was effectively improved, the complex calculating time problems with the fiber-reinforced composites were solved. • Progressive damage process was efficiently predicted by the proposed ANN model . The composite laminates with circular holes find numerous applications in aerospace, automobile manufacturing and other fields due to the design and assembly of structural components. The failure analysis of composite laminates with notches or holes is of great importance in structural applications. In this work, a finite element method (FEM) based artificial neural network (ANN) model is presented to predict the strength and progressive damage behavior of carbon fiber reinforced polymer (CFRP) laminates with holes subjected to the external loads. The activation functions in the model design are reasonably chosen. The ANN prediction results are found to be in good agreement with the simulation results, thereby confirming the accuracy of ANN model. The developed ANN model is suitable for the rapid prediction of progressive damage failure behavior of the open-hole composite laminates. The elastic deformation and the progressive damage behavior of the CFRP laminates with circular holes are predicted by the proposed ANN model, which provides a good machine learning platform with high efficiency and finds potential applications in other fields." @default.
- W4281612334 created "2022-06-12" @default.
- W4281612334 creator A5012450972 @default.
- W4281612334 creator A5018457347 @default.
- W4281612334 creator A5034170276 @default.
- W4281612334 creator A5044795540 @default.
- W4281612334 creator A5057117256 @default.
- W4281612334 creator A5057890808 @default.
- W4281612334 creator A5069174002 @default.
- W4281612334 date "2022-09-01" @default.
- W4281612334 modified "2023-09-30" @default.
- W4281612334 title "Strength prediction and progressive damage analysis of carbon fiber reinforced polymer-laminate with circular holes by an efficient Artificial Neural Network" @default.
- W4281612334 cites W1500659785 @default.
- W4281612334 cites W1878525117 @default.
- W4281612334 cites W1984476082 @default.
- W4281612334 cites W1991023460 @default.
- W4281612334 cites W2046904226 @default.
- W4281612334 cites W2075249150 @default.
- W4281612334 cites W2092020253 @default.
- W4281612334 cites W2094659105 @default.
- W4281612334 cites W2112900765 @default.
- W4281612334 cites W2122342483 @default.
- W4281612334 cites W2139527741 @default.
- W4281612334 cites W2410248077 @default.
- W4281612334 cites W2591958438 @default.
- W4281612334 cites W2624989300 @default.
- W4281612334 cites W2759450335 @default.
- W4281612334 cites W2802862742 @default.
- W4281612334 cites W2803156144 @default.
- W4281612334 cites W2805777538 @default.
- W4281612334 cites W2885104156 @default.
- W4281612334 cites W2902198025 @default.
- W4281612334 cites W2913483016 @default.
- W4281612334 cites W2915602458 @default.
- W4281612334 cites W2972558540 @default.
- W4281612334 cites W2989584351 @default.
- W4281612334 cites W2991439130 @default.
- W4281612334 cites W3005568658 @default.
- W4281612334 cites W3006281476 @default.
- W4281612334 cites W3011276703 @default.
- W4281612334 cites W3015573581 @default.
- W4281612334 cites W3017063382 @default.
- W4281612334 cites W3021138378 @default.
- W4281612334 cites W3033032413 @default.
- W4281612334 cites W3037186237 @default.
- W4281612334 cites W3039900661 @default.
- W4281612334 cites W3047913169 @default.
- W4281612334 cites W3049449316 @default.
- W4281612334 cites W3102413575 @default.
- W4281612334 cites W3112270356 @default.
- W4281612334 cites W3125456884 @default.
- W4281612334 cites W3127472657 @default.
- W4281612334 cites W3129331433 @default.
- W4281612334 cites W3131400365 @default.
- W4281612334 cites W3133189339 @default.
- W4281612334 cites W3133592813 @default.
- W4281612334 cites W3134450470 @default.
- W4281612334 cites W3135518078 @default.
- W4281612334 cites W3156485887 @default.
- W4281612334 cites W4206819993 @default.
- W4281612334 cites W3096117114 @default.
- W4281612334 doi "https://doi.org/10.1016/j.compstruct.2022.115835" @default.
- W4281612334 hasPublicationYear "2022" @default.
- W4281612334 type Work @default.
- W4281612334 citedByCount "4" @default.
- W4281612334 countsByYear W42816123342022 @default.
- W4281612334 countsByYear W42816123342023 @default.
- W4281612334 crossrefType "journal-article" @default.
- W4281612334 hasAuthorship W4281612334A5012450972 @default.
- W4281612334 hasAuthorship W4281612334A5018457347 @default.
- W4281612334 hasAuthorship W4281612334A5034170276 @default.
- W4281612334 hasAuthorship W4281612334A5044795540 @default.
- W4281612334 hasAuthorship W4281612334A5057117256 @default.
- W4281612334 hasAuthorship W4281612334A5057890808 @default.
- W4281612334 hasAuthorship W4281612334A5069174002 @default.
- W4281612334 hasConcept C104779481 @default.
- W4281612334 hasConcept C127413603 @default.
- W4281612334 hasConcept C140205800 @default.
- W4281612334 hasConcept C154945302 @default.
- W4281612334 hasConcept C159985019 @default.
- W4281612334 hasConcept C186060115 @default.
- W4281612334 hasConcept C192562407 @default.
- W4281612334 hasConcept C2777178879 @default.
- W4281612334 hasConcept C2988805333 @default.
- W4281612334 hasConcept C41008148 @default.
- W4281612334 hasConcept C50644808 @default.
- W4281612334 hasConcept C521977710 @default.
- W4281612334 hasConcept C66938386 @default.
- W4281612334 hasConcept C86803240 @default.
- W4281612334 hasConceptScore W4281612334C104779481 @default.
- W4281612334 hasConceptScore W4281612334C127413603 @default.
- W4281612334 hasConceptScore W4281612334C140205800 @default.
- W4281612334 hasConceptScore W4281612334C154945302 @default.
- W4281612334 hasConceptScore W4281612334C159985019 @default.
- W4281612334 hasConceptScore W4281612334C186060115 @default.
- W4281612334 hasConceptScore W4281612334C192562407 @default.
- W4281612334 hasConceptScore W4281612334C2777178879 @default.
- W4281612334 hasConceptScore W4281612334C2988805333 @default.