Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281615031> ?p ?o ?g. }
- W4281615031 endingPage "2359" @default.
- W4281615031 startingPage "2346" @default.
- W4281615031 abstract "Abstract As landscape‐scale conservation models grow in prominence, assessments of how wildlife utilise multiple‐use landscapes are required to inform effective conservation and management planning. Such efforts should incorporate multi‐species perspectives to maximise value for conservation, and should account for scale to accurately capture species‐environment relationships. We show that the random forest machine learning algorithm can be used to model large‐scale sign‐based data in a multi‐scale framework. We used this method to investigate scale‐dependent habitat associations for 16 mammal species of high conservation importance across the southern Kavango Zambezi (KAZA) Transfrontier Conservation Area in Botswana and Zimbabwe. Our findings revealed substantial variation in factors shaping habitat use across species, and illustrate that different species often have divergent responses to the same environmental and anthropogenic factors, and differ in the scales at which they respond to them. For all variables across all species, scale optimisation most often selected our largest scale. Precipitation, soil nutrients, and vegetation appeared to be the most important factors determining mammal distributions, likely through their associations with food resources for herbivores and, in turn, prey availability for carnivores. Anthropogenic pressures also had an important influence, with many species selecting against areas with high cattle density. The variety of relationships with human density indicated that species vary in their tolerance of humans. We found a consistent positive relationship with areas under high protection, and negative relationship with unprotected and less‐strictly protected areas. Policy implications . Through a novel application of random forest modelling to spoor data from 16 mammal species, this study highlights the importance of adopting a multi‐scale, multi‐species approach for decision‐making processes that depend on understanding wildlife distributions and habitat associations, such as protected area and corridor prioritisation. The findings identify changing rainfall patterns and increasing livestock numbers as emerging trends that may impact wildlife distributions, both within sub‐Saharan Africa and on a global scale. Wildlife management authorities should use modelling exercises and adaptive management to ensure that protected area networks remain fit for purpose under anticipated changes in rainfall under climate change, and explore initiatives that promote coexistence of wildlife and livestock." @default.
- W4281615031 created "2022-06-12" @default.
- W4281615031 creator A5008699740 @default.
- W4281615031 creator A5017078586 @default.
- W4281615031 creator A5024853810 @default.
- W4281615031 creator A5050025376 @default.
- W4281615031 creator A5062119084 @default.
- W4281615031 creator A5063845595 @default.
- W4281615031 creator A5078229895 @default.
- W4281615031 creator A5078256975 @default.
- W4281615031 creator A5080860518 @default.
- W4281615031 creator A5082902541 @default.
- W4281615031 creator A5088029271 @default.
- W4281615031 date "2022-06-23" @default.
- W4281615031 modified "2023-09-25" @default.
- W4281615031 title "Random forest modelling of multi‐scale, multi‐species habitat associations within <scp>KAZA</scp> transfrontier conservation area using spoor data" @default.
- W4281615031 cites W1972110194 @default.
- W4281615031 cites W1982338803 @default.
- W4281615031 cites W2024190117 @default.
- W4281615031 cites W2031983113 @default.
- W4281615031 cites W2042504207 @default.
- W4281615031 cites W2052458288 @default.
- W4281615031 cites W2090991386 @default.
- W4281615031 cites W2093480073 @default.
- W4281615031 cites W2126788973 @default.
- W4281615031 cites W2145004984 @default.
- W4281615031 cites W2154570188 @default.
- W4281615031 cites W2154646668 @default.
- W4281615031 cites W2202625490 @default.
- W4281615031 cites W2292053925 @default.
- W4281615031 cites W2588003345 @default.
- W4281615031 cites W2614464134 @default.
- W4281615031 cites W2735554706 @default.
- W4281615031 cites W2741922227 @default.
- W4281615031 cites W2772182422 @default.
- W4281615031 cites W2792563852 @default.
- W4281615031 cites W2890801557 @default.
- W4281615031 cites W2896418474 @default.
- W4281615031 cites W2899100088 @default.
- W4281615031 cites W2899534781 @default.
- W4281615031 cites W2911964244 @default.
- W4281615031 cites W3008354678 @default.
- W4281615031 cites W3011146076 @default.
- W4281615031 cites W3014298507 @default.
- W4281615031 cites W3033355210 @default.
- W4281615031 cites W3036924319 @default.
- W4281615031 cites W3130131999 @default.
- W4281615031 cites W3157985350 @default.
- W4281615031 cites W4281615031 @default.
- W4281615031 cites W9288028 @default.
- W4281615031 doi "https://doi.org/10.1111/1365-2664.14234" @default.
- W4281615031 hasPublicationYear "2022" @default.
- W4281615031 type Work @default.
- W4281615031 citedByCount "3" @default.
- W4281615031 countsByYear W42816150312022 @default.
- W4281615031 countsByYear W42816150312023 @default.
- W4281615031 crossrefType "journal-article" @default.
- W4281615031 hasAuthorship W4281615031A5008699740 @default.
- W4281615031 hasAuthorship W4281615031A5017078586 @default.
- W4281615031 hasAuthorship W4281615031A5024853810 @default.
- W4281615031 hasAuthorship W4281615031A5050025376 @default.
- W4281615031 hasAuthorship W4281615031A5062119084 @default.
- W4281615031 hasAuthorship W4281615031A5063845595 @default.
- W4281615031 hasAuthorship W4281615031A5078229895 @default.
- W4281615031 hasAuthorship W4281615031A5078256975 @default.
- W4281615031 hasAuthorship W4281615031A5080860518 @default.
- W4281615031 hasAuthorship W4281615031A5082902541 @default.
- W4281615031 hasAuthorship W4281615031A5088029271 @default.
- W4281615031 hasBestOaLocation W42816150311 @default.
- W4281615031 hasConcept C107826830 @default.
- W4281615031 hasConcept C142724271 @default.
- W4281615031 hasConcept C185933670 @default.
- W4281615031 hasConcept C18903297 @default.
- W4281615031 hasConcept C205649164 @default.
- W4281615031 hasConcept C2776133958 @default.
- W4281615031 hasConcept C2778755073 @default.
- W4281615031 hasConcept C29376679 @default.
- W4281615031 hasConcept C39432304 @default.
- W4281615031 hasConcept C46325548 @default.
- W4281615031 hasConcept C58640448 @default.
- W4281615031 hasConcept C71924100 @default.
- W4281615031 hasConcept C86803240 @default.
- W4281615031 hasConceptScore W4281615031C107826830 @default.
- W4281615031 hasConceptScore W4281615031C142724271 @default.
- W4281615031 hasConceptScore W4281615031C185933670 @default.
- W4281615031 hasConceptScore W4281615031C18903297 @default.
- W4281615031 hasConceptScore W4281615031C205649164 @default.
- W4281615031 hasConceptScore W4281615031C2776133958 @default.
- W4281615031 hasConceptScore W4281615031C2778755073 @default.
- W4281615031 hasConceptScore W4281615031C29376679 @default.
- W4281615031 hasConceptScore W4281615031C39432304 @default.
- W4281615031 hasConceptScore W4281615031C46325548 @default.
- W4281615031 hasConceptScore W4281615031C58640448 @default.
- W4281615031 hasConceptScore W4281615031C71924100 @default.
- W4281615031 hasConceptScore W4281615031C86803240 @default.
- W4281615031 hasFunder F4320314691 @default.
- W4281615031 hasFunder F4320334631 @default.
- W4281615031 hasIssue "9" @default.