Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281617810> ?p ?o ?g. }
- W4281617810 endingPage "858" @default.
- W4281617810 startingPage "858" @default.
- W4281617810 abstract "Due to rapid urban expansion, urban agglomerations face enormous challenges on their way to carbon neutrality. Regarding China’s urban agglomerations, 25% of the land contains 75% of the population, and all types of land are used efficiently and intensively. However, few studies have explored the spatiotemporal link between changes in land use and land cover (LULC) and carbon storage. In this work, the carbon storage changes from 1990 to 2020 were estimated using the InVEST model in China’s Beijing–Tianjin–Hebei (BTH) region. By coupling the Future Land Use Simulation (FLUS) model and InVEST model, the LULC and carbon storage changes in the BTH region in 2035 and 2050 under the natural evolution scenario (NES), economic priority scenario (EPS), ecological conservation scenario (ECS), and coordinated development scenario (CDS). Finally, the spatial autocorrelation analysis of regional carbon storage was developed for future zoning management. The results revealed the following: (1) the carbon storage in the BTH region exhibited a cumulative loss of 3.5 × 107 Mg from 1990 to 2020, and the carbon loss was serious between 2000 and 2010 due to rapid urbanization. (2) Excluding the ECS, the other three scenarios showed continued expansion of construction land. Under the EPS, the carbon storage was found to have the lowest value, which decreased to 16.05 × 108 Mg in 2035 and only 15.38 × 108 Mg in 2050; under the ECS, the carbon storage was predicted to reach the highest value, 18.22 × 108 Mg and 19.00 × 108 Mg, respectively; the CDS exhibited a similar trend as the NES, but the carbon storage was found to increase. (3) The carbon storage under the four scenarios was found to have a certain degree of similarity in terms of its spatial distribution; the high-value areas were found to be clustered in the northwestern part of Beijing and the northern and western parts of Hebei. As for the number of areas with high carbon storage, the ECS was found to be the most abundant, followed by the CDS, and the EPS was found to be the least. The findings of this study can help the BTH region implement the “dual carbon” target and provide a leading example for other urban agglomerations." @default.
- W4281617810 created "2022-06-13" @default.
- W4281617810 creator A5039194031 @default.
- W4281617810 creator A5055055079 @default.
- W4281617810 creator A5057140847 @default.
- W4281617810 creator A5061319186 @default.
- W4281617810 date "2022-06-07" @default.
- W4281617810 modified "2023-09-30" @default.
- W4281617810 title "The Spatiotemporal Evolution and Prediction of Carbon Storage: A Case Study of Urban Agglomeration in China’s Beijing-Tianjin-Hebei Region" @default.
- W4281617810 cites W2032445183 @default.
- W4281617810 cites W2040729350 @default.
- W4281617810 cites W2095516956 @default.
- W4281617810 cites W2190761490 @default.
- W4281617810 cites W2564777338 @default.
- W4281617810 cites W2585636497 @default.
- W4281617810 cites W2607424328 @default.
- W4281617810 cites W2766529052 @default.
- W4281617810 cites W2797544071 @default.
- W4281617810 cites W2887677299 @default.
- W4281617810 cites W2889736112 @default.
- W4281617810 cites W2894121190 @default.
- W4281617810 cites W2895185754 @default.
- W4281617810 cites W2899445633 @default.
- W4281617810 cites W2899452179 @default.
- W4281617810 cites W2905199089 @default.
- W4281617810 cites W2936282117 @default.
- W4281617810 cites W2945701688 @default.
- W4281617810 cites W2945965486 @default.
- W4281617810 cites W2946673304 @default.
- W4281617810 cites W2952543294 @default.
- W4281617810 cites W2974375890 @default.
- W4281617810 cites W2995200772 @default.
- W4281617810 cites W3010388857 @default.
- W4281617810 cites W3012386013 @default.
- W4281617810 cites W3042161851 @default.
- W4281617810 cites W3045438072 @default.
- W4281617810 cites W3047107171 @default.
- W4281617810 cites W3093290767 @default.
- W4281617810 cites W3102921619 @default.
- W4281617810 cites W3109268000 @default.
- W4281617810 cites W3111312026 @default.
- W4281617810 cites W3125257572 @default.
- W4281617810 cites W3131512844 @default.
- W4281617810 cites W3135581101 @default.
- W4281617810 cites W3173341862 @default.
- W4281617810 cites W3178866458 @default.
- W4281617810 cites W3207011950 @default.
- W4281617810 cites W3209864633 @default.
- W4281617810 cites W4200114668 @default.
- W4281617810 cites W4205145075 @default.
- W4281617810 cites W4210720720 @default.
- W4281617810 cites W4213310158 @default.
- W4281617810 cites W4221020299 @default.
- W4281617810 cites W4250326091 @default.
- W4281617810 doi "https://doi.org/10.3390/land11060858" @default.
- W4281617810 hasPublicationYear "2022" @default.
- W4281617810 type Work @default.
- W4281617810 citedByCount "9" @default.
- W4281617810 countsByYear W42816178102022 @default.
- W4281617810 countsByYear W42816178102023 @default.
- W4281617810 crossrefType "journal-article" @default.
- W4281617810 hasAuthorship W4281617810A5039194031 @default.
- W4281617810 hasAuthorship W4281617810A5055055079 @default.
- W4281617810 hasAuthorship W4281617810A5057140847 @default.
- W4281617810 hasAuthorship W4281617810A5061319186 @default.
- W4281617810 hasBestOaLocation W42816178101 @default.
- W4281617810 hasConcept C104779481 @default.
- W4281617810 hasConcept C11413529 @default.
- W4281617810 hasConcept C140205800 @default.
- W4281617810 hasConcept C144024400 @default.
- W4281617810 hasConcept C149923435 @default.
- W4281617810 hasConcept C154611951 @default.
- W4281617810 hasConcept C166957645 @default.
- W4281617810 hasConcept C18903297 @default.
- W4281617810 hasConcept C191935318 @default.
- W4281617810 hasConcept C205649164 @default.
- W4281617810 hasConcept C26271046 @default.
- W4281617810 hasConcept C2778304055 @default.
- W4281617810 hasConcept C2780648208 @default.
- W4281617810 hasConcept C2908647359 @default.
- W4281617810 hasConcept C39432304 @default.
- W4281617810 hasConcept C39853841 @default.
- W4281617810 hasConcept C41008148 @default.
- W4281617810 hasConcept C4792198 @default.
- W4281617810 hasConcept C86803240 @default.
- W4281617810 hasConceptScore W4281617810C104779481 @default.
- W4281617810 hasConceptScore W4281617810C11413529 @default.
- W4281617810 hasConceptScore W4281617810C140205800 @default.
- W4281617810 hasConceptScore W4281617810C144024400 @default.
- W4281617810 hasConceptScore W4281617810C149923435 @default.
- W4281617810 hasConceptScore W4281617810C154611951 @default.
- W4281617810 hasConceptScore W4281617810C166957645 @default.
- W4281617810 hasConceptScore W4281617810C18903297 @default.
- W4281617810 hasConceptScore W4281617810C191935318 @default.
- W4281617810 hasConceptScore W4281617810C205649164 @default.
- W4281617810 hasConceptScore W4281617810C26271046 @default.
- W4281617810 hasConceptScore W4281617810C2778304055 @default.
- W4281617810 hasConceptScore W4281617810C2780648208 @default.