Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281634283> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4281634283 endingPage "118" @default.
- W4281634283 startingPage "111" @default.
- W4281634283 abstract "Multi-classification tasks need sufficient information provided by the input data, whereas the input data lying in the high-dimensional space presents too sparse distributions to afford rich information, which creates trouble for multi-classification tasks. To address this, this paper proposed a probabilistic neural network approach. Firstly, the classification probability of high-dimensional data is calculated by using a novel Equation for Naïve Bayesian in order to reduce misclassification probability caused by the high dimension of the input data. Then, the calculated classification probability is fused into the cost function of the neural networks, forming the probabilistic neural networks. Results on high-dimensional real-world datasets and the National Surface Water Quality data provided by Environmental Monitoring Station, China show that the proposed method outperforms comparison methods in both classification ability and resisting the curse of dimensionality. We find that neural networks hardly obtain those advanced classification results upon a high-dimensional space because of the curse of dimensionality, but calculating classification probability of the input data can be confident to help neural networks to be resistance to the negative effects caused by high dimension of the input data." @default.
- W4281634283 created "2022-06-13" @default.
- W4281634283 creator A5050914571 @default.
- W4281634283 creator A5082469851 @default.
- W4281634283 creator A5090539201 @default.
- W4281634283 date "2022-06-01" @default.
- W4281634283 modified "2023-10-18" @default.
- W4281634283 title "Multi-classification for high-dimensional data using probabilistic neural networks" @default.
- W4281634283 cites W2004575852 @default.
- W4281634283 cites W2075181706 @default.
- W4281634283 cites W2316060816 @default.
- W4281634283 cites W2339611261 @default.
- W4281634283 cites W2344681634 @default.
- W4281634283 cites W2386210108 @default.
- W4281634283 cites W2443284789 @default.
- W4281634283 cites W2516938563 @default.
- W4281634283 cites W2558662207 @default.
- W4281634283 cites W2758000438 @default.
- W4281634283 cites W2796765386 @default.
- W4281634283 cites W2805027133 @default.
- W4281634283 cites W2900791133 @default.
- W4281634283 cites W2950250245 @default.
- W4281634283 doi "https://doi.org/10.1016/j.jrras.2022.05.010" @default.
- W4281634283 hasPublicationYear "2022" @default.
- W4281634283 type Work @default.
- W4281634283 citedByCount "3" @default.
- W4281634283 countsByYear W42816342832023 @default.
- W4281634283 crossrefType "journal-article" @default.
- W4281634283 hasAuthorship W4281634283A5050914571 @default.
- W4281634283 hasAuthorship W4281634283A5082469851 @default.
- W4281634283 hasAuthorship W4281634283A5090539201 @default.
- W4281634283 hasBestOaLocation W42816342831 @default.
- W4281634283 hasConcept C107673813 @default.
- W4281634283 hasConcept C111030470 @default.
- W4281634283 hasConcept C119857082 @default.
- W4281634283 hasConcept C12267149 @default.
- W4281634283 hasConcept C124101348 @default.
- W4281634283 hasConcept C134342201 @default.
- W4281634283 hasConcept C153180895 @default.
- W4281634283 hasConcept C154945302 @default.
- W4281634283 hasConcept C175202392 @default.
- W4281634283 hasConcept C189119545 @default.
- W4281634283 hasConcept C202444582 @default.
- W4281634283 hasConcept C33676613 @default.
- W4281634283 hasConcept C33724603 @default.
- W4281634283 hasConcept C33923547 @default.
- W4281634283 hasConcept C41008148 @default.
- W4281634283 hasConcept C49937458 @default.
- W4281634283 hasConcept C50644808 @default.
- W4281634283 hasConcept C52001869 @default.
- W4281634283 hasConceptScore W4281634283C107673813 @default.
- W4281634283 hasConceptScore W4281634283C111030470 @default.
- W4281634283 hasConceptScore W4281634283C119857082 @default.
- W4281634283 hasConceptScore W4281634283C12267149 @default.
- W4281634283 hasConceptScore W4281634283C124101348 @default.
- W4281634283 hasConceptScore W4281634283C134342201 @default.
- W4281634283 hasConceptScore W4281634283C153180895 @default.
- W4281634283 hasConceptScore W4281634283C154945302 @default.
- W4281634283 hasConceptScore W4281634283C175202392 @default.
- W4281634283 hasConceptScore W4281634283C189119545 @default.
- W4281634283 hasConceptScore W4281634283C202444582 @default.
- W4281634283 hasConceptScore W4281634283C33676613 @default.
- W4281634283 hasConceptScore W4281634283C33724603 @default.
- W4281634283 hasConceptScore W4281634283C33923547 @default.
- W4281634283 hasConceptScore W4281634283C41008148 @default.
- W4281634283 hasConceptScore W4281634283C49937458 @default.
- W4281634283 hasConceptScore W4281634283C50644808 @default.
- W4281634283 hasConceptScore W4281634283C52001869 @default.
- W4281634283 hasIssue "2" @default.
- W4281634283 hasLocation W42816342831 @default.
- W4281634283 hasOpenAccess W4281634283 @default.
- W4281634283 hasPrimaryLocation W42816342831 @default.
- W4281634283 hasRelatedWork W154148467 @default.
- W4281634283 hasRelatedWork W2010693867 @default.
- W4281634283 hasRelatedWork W2048220287 @default.
- W4281634283 hasRelatedWork W2067837718 @default.
- W4281634283 hasRelatedWork W2288895205 @default.
- W4281634283 hasRelatedWork W2355754418 @default.
- W4281634283 hasRelatedWork W2355766745 @default.
- W4281634283 hasRelatedWork W2374528926 @default.
- W4281634283 hasRelatedWork W2381770184 @default.
- W4281634283 hasRelatedWork W4281553196 @default.
- W4281634283 hasVolume "15" @default.
- W4281634283 isParatext "false" @default.
- W4281634283 isRetracted "false" @default.
- W4281634283 workType "article" @default.