Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281635321> ?p ?o ?g. }
- W4281635321 endingPage "856" @default.
- W4281635321 startingPage "856" @default.
- W4281635321 abstract "Forest fires are disasters that are common around the world. They pose an ongoing challenge in scientific and forest management. Predicting forest fires improves the levels of forest-fire prevention and risk avoidance. This study aimed to construct a forest risk map for China. We base our map on Visible Infrared Imaging Radiometer Suite data from 17,330 active fires for the period 2012–2019, and combined terrain, meteorology, social economy, vegetation, and other factors closely related to the generation of forest-fire disasters for modeling and predicting forest fires. Four machine learning models for predicting forest fires were compared (i.e., random forest (RF), support vector machine (SVM), multi-layer perceptron (MLP), and gradient-boosting decision tree (GBDT) algorithm), and the RF model was chosen (its accuracy, precision, recall, F1, AUC values were 87.99%, 85.94%, 91.51%, 88.64% and 95.11% respectively). The Chinese seasonal fire zoning map was drawn with the municipal administrative unit as the spatial scale for the first time. The results show evident seasonal and regional differences in the Chinese forest-fire risks; forest-fire risks are relativity high in the spring and winter, but low in fall and summer, and the areas with high regional fire risk are mainly in the provinces of Yunnan (including the cities of Qujing, Lijiang, and Yuxi), Guangdong (including the cities of Shaoguan, Huizhou, and Qingyuan), and Fujian (including the cities of Nanping and Sanming). The major contributions of this study are to (i) provide a framework for large-scale forest-fire risk prediction having a low cost, high precision, and ease of operation, and (ii) improve the understanding of forest-fire risks in China." @default.
- W4281635321 created "2022-06-13" @default.
- W4281635321 creator A5002273456 @default.
- W4281635321 creator A5005706058 @default.
- W4281635321 creator A5010305623 @default.
- W4281635321 creator A5028995579 @default.
- W4281635321 creator A5040965498 @default.
- W4281635321 creator A5052134746 @default.
- W4281635321 creator A5062895972 @default.
- W4281635321 date "2022-05-30" @default.
- W4281635321 modified "2023-10-07" @default.
- W4281635321 title "Mapping China’s Forest Fire Risks with Machine Learning" @default.
- W4281635321 cites W1436653101 @default.
- W4281635321 cites W1487156010 @default.
- W4281635321 cites W1614153076 @default.
- W4281635321 cites W1678356000 @default.
- W4281635321 cites W1749556263 @default.
- W4281635321 cites W1964208927 @default.
- W4281635321 cites W1964647807 @default.
- W4281635321 cites W1979218299 @default.
- W4281635321 cites W1979704339 @default.
- W4281635321 cites W1987716414 @default.
- W4281635321 cites W1990748933 @default.
- W4281635321 cites W2010150056 @default.
- W4281635321 cites W2014740640 @default.
- W4281635321 cites W2042952446 @default.
- W4281635321 cites W2045671290 @default.
- W4281635321 cites W2046776299 @default.
- W4281635321 cites W2047376721 @default.
- W4281635321 cites W2065295953 @default.
- W4281635321 cites W2082781681 @default.
- W4281635321 cites W2084737172 @default.
- W4281635321 cites W2086524979 @default.
- W4281635321 cites W2091594907 @default.
- W4281635321 cites W2112370119 @default.
- W4281635321 cites W2112983189 @default.
- W4281635321 cites W2142591013 @default.
- W4281635321 cites W2149298154 @default.
- W4281635321 cites W2150764041 @default.
- W4281635321 cites W2155096269 @default.
- W4281635321 cites W2155261478 @default.
- W4281635321 cites W2266669778 @default.
- W4281635321 cites W2296237361 @default.
- W4281635321 cites W2344736925 @default.
- W4281635321 cites W2405328530 @default.
- W4281635321 cites W2576419228 @default.
- W4281635321 cites W2611314312 @default.
- W4281635321 cites W2725711042 @default.
- W4281635321 cites W2754716656 @default.
- W4281635321 cites W2772130973 @default.
- W4281635321 cites W2789262548 @default.
- W4281635321 cites W2792627470 @default.
- W4281635321 cites W2802647603 @default.
- W4281635321 cites W2804980301 @default.
- W4281635321 cites W2911964244 @default.
- W4281635321 cites W2913649977 @default.
- W4281635321 cites W2920455132 @default.
- W4281635321 cites W2922202880 @default.
- W4281635321 cites W2944366268 @default.
- W4281635321 cites W2946047567 @default.
- W4281635321 cites W2955809930 @default.
- W4281635321 cites W2964406534 @default.
- W4281635321 cites W2971060441 @default.
- W4281635321 cites W2972175198 @default.
- W4281635321 cites W2981982271 @default.
- W4281635321 cites W2989363286 @default.
- W4281635321 cites W2990604182 @default.
- W4281635321 cites W2995014444 @default.
- W4281635321 cites W2999918775 @default.
- W4281635321 cites W3007286176 @default.
- W4281635321 cites W3015148471 @default.
- W4281635321 cites W3015900272 @default.
- W4281635321 cites W3017565788 @default.
- W4281635321 cites W3019388225 @default.
- W4281635321 cites W3022979107 @default.
- W4281635321 cites W3034300825 @default.
- W4281635321 cites W3082119794 @default.
- W4281635321 cites W3096207306 @default.
- W4281635321 cites W3097445852 @default.
- W4281635321 cites W3137547018 @default.
- W4281635321 cites W3166182933 @default.
- W4281635321 cites W790676990 @default.
- W4281635321 doi "https://doi.org/10.3390/f13060856" @default.
- W4281635321 hasPublicationYear "2022" @default.
- W4281635321 type Work @default.
- W4281635321 citedByCount "14" @default.
- W4281635321 countsByYear W42816353212022 @default.
- W4281635321 countsByYear W42816353212023 @default.
- W4281635321 crossrefType "journal-article" @default.
- W4281635321 hasAuthorship W4281635321A5002273456 @default.
- W4281635321 hasAuthorship W4281635321A5005706058 @default.
- W4281635321 hasAuthorship W4281635321A5010305623 @default.
- W4281635321 hasAuthorship W4281635321A5028995579 @default.
- W4281635321 hasAuthorship W4281635321A5040965498 @default.
- W4281635321 hasAuthorship W4281635321A5052134746 @default.
- W4281635321 hasAuthorship W4281635321A5062895972 @default.
- W4281635321 hasBestOaLocation W42816353211 @default.
- W4281635321 hasConcept C100970517 @default.