Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281637924> ?p ?o ?g. }
- W4281637924 endingPage "78" @default.
- W4281637924 startingPage "63" @default.
- W4281637924 abstract "Deep neural network (DNN) based computer-aided breast tumor diagnosis (CABTD) method plays a vital role in the early detection and diagnosis of breast tumors. However, a Brightness mode (B-mode) ultrasound image derives training feature samples that make closer isolation toward the infection part. Hence, it is expensive due to a meta-heuristic search of features occupying the global region of interest (ROI) structures of input images. Thus, it may lead to the high computational complexity of the pre-trained DNN-based CABTD method. This paper proposes a novel ensemble pre-trained DNN-based CABTD method using global- and local-ROI-structures of B-mode ultrasound images. It conveys the additional consideration of a local-ROI-structures for further enhancing the pre-trained DNN-based CABTD method’s breast tumor diagnostic performance without degrading its visual quality. The features are extracted at various depths (18, 50, and 101) from the global and local ROI structures and feed to support vector machine for better classification. From the experimental results, it has been observed that the combined local and global ROI structure of small depth residual network ResNet18 (0.8 in %) has produced significant improvement in pixel ratio as compared to ResNet50 (0.5 in %) and ResNet101 (0.3 in %), respectively. Subsequently, the pre-trained DNN-based CABTD methods have been tested by influencing local and global ROI structures to diagnose two specific breast tumors (Benign and Malignant) and improve the diagnostic accuracy (86%) compared to Dense Net, Alex Net, VGG Net, and Google Net. Moreover, it reduces the computational complexity due to the small depth residual network ResNet18, respectively." @default.
- W4281637924 created "2022-06-13" @default.
- W4281637924 creator A5045226724 @default.
- W4281637924 creator A5061201653 @default.
- W4281637924 date "2023-01-01" @default.
- W4281637924 modified "2023-10-14" @default.
- W4281637924 title "Pre-Trained Deep Neural Network-Based Computer-Aided Breast Tumor Diagnosis Using ROI Structures" @default.
- W4281637924 cites W1963691800 @default.
- W4281637924 cites W1972489770 @default.
- W4281637924 cites W1988819287 @default.
- W4281637924 cites W1989924788 @default.
- W4281637924 cites W1993584845 @default.
- W4281637924 cites W2067032929 @default.
- W4281637924 cites W2071302409 @default.
- W4281637924 cites W2084985476 @default.
- W4281637924 cites W2092111848 @default.
- W4281637924 cites W2103352779 @default.
- W4281637924 cites W2111151267 @default.
- W4281637924 cites W2115202480 @default.
- W4281637924 cites W2139372524 @default.
- W4281637924 cites W2141619730 @default.
- W4281637924 cites W2143461846 @default.
- W4281637924 cites W2154434563 @default.
- W4281637924 cites W2167536222 @default.
- W4281637924 cites W2169949947 @default.
- W4281637924 cites W2345010043 @default.
- W4281637924 cites W2472971850 @default.
- W4281637924 cites W2564921842 @default.
- W4281637924 cites W2566352549 @default.
- W4281637924 cites W2618530766 @default.
- W4281637924 cites W2740028789 @default.
- W4281637924 cites W2744692634 @default.
- W4281637924 cites W2779541678 @default.
- W4281637924 cites W2788508510 @default.
- W4281637924 cites W2792252898 @default.
- W4281637924 cites W2895926103 @default.
- W4281637924 cites W2939142770 @default.
- W4281637924 cites W2947267495 @default.
- W4281637924 cites W2955429674 @default.
- W4281637924 cites W2969326038 @default.
- W4281637924 cites W2991372685 @default.
- W4281637924 cites W3002592716 @default.
- W4281637924 cites W3044053425 @default.
- W4281637924 cites W3091273318 @default.
- W4281637924 cites W3107969486 @default.
- W4281637924 cites W4211005384 @default.
- W4281637924 cites W4239510810 @default.
- W4281637924 doi "https://doi.org/10.32604/iasc.2023.023474" @default.
- W4281637924 hasPublicationYear "2023" @default.
- W4281637924 type Work @default.
- W4281637924 citedByCount "1" @default.
- W4281637924 countsByYear W42816379242022 @default.
- W4281637924 crossrefType "journal-article" @default.
- W4281637924 hasAuthorship W4281637924A5045226724 @default.
- W4281637924 hasAuthorship W4281637924A5061201653 @default.
- W4281637924 hasBestOaLocation W42816379241 @default.
- W4281637924 hasConcept C11413529 @default.
- W4281637924 hasConcept C121608353 @default.
- W4281637924 hasConcept C12267149 @default.
- W4281637924 hasConcept C126322002 @default.
- W4281637924 hasConcept C153180895 @default.
- W4281637924 hasConcept C154945302 @default.
- W4281637924 hasConcept C155512373 @default.
- W4281637924 hasConcept C160633673 @default.
- W4281637924 hasConcept C19609008 @default.
- W4281637924 hasConcept C2777423100 @default.
- W4281637924 hasConcept C2779549770 @default.
- W4281637924 hasConcept C2780472235 @default.
- W4281637924 hasConcept C31972630 @default.
- W4281637924 hasConcept C41008148 @default.
- W4281637924 hasConcept C50644808 @default.
- W4281637924 hasConcept C530470458 @default.
- W4281637924 hasConcept C71924100 @default.
- W4281637924 hasConceptScore W4281637924C11413529 @default.
- W4281637924 hasConceptScore W4281637924C121608353 @default.
- W4281637924 hasConceptScore W4281637924C12267149 @default.
- W4281637924 hasConceptScore W4281637924C126322002 @default.
- W4281637924 hasConceptScore W4281637924C153180895 @default.
- W4281637924 hasConceptScore W4281637924C154945302 @default.
- W4281637924 hasConceptScore W4281637924C155512373 @default.
- W4281637924 hasConceptScore W4281637924C160633673 @default.
- W4281637924 hasConceptScore W4281637924C19609008 @default.
- W4281637924 hasConceptScore W4281637924C2777423100 @default.
- W4281637924 hasConceptScore W4281637924C2779549770 @default.
- W4281637924 hasConceptScore W4281637924C2780472235 @default.
- W4281637924 hasConceptScore W4281637924C31972630 @default.
- W4281637924 hasConceptScore W4281637924C41008148 @default.
- W4281637924 hasConceptScore W4281637924C50644808 @default.
- W4281637924 hasConceptScore W4281637924C530470458 @default.
- W4281637924 hasConceptScore W4281637924C71924100 @default.
- W4281637924 hasIssue "1" @default.
- W4281637924 hasLocation W42816379241 @default.
- W4281637924 hasOpenAccess W4281637924 @default.
- W4281637924 hasPrimaryLocation W42816379241 @default.
- W4281637924 hasRelatedWork W121273120 @default.
- W4281637924 hasRelatedWork W2002009170 @default.
- W4281637924 hasRelatedWork W2034462085 @default.
- W4281637924 hasRelatedWork W2141888456 @default.