Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281638536> ?p ?o ?g. }
- W4281638536 endingPage "214" @default.
- W4281638536 startingPage "210" @default.
- W4281638536 abstract "To create a new methodology that has a single simple rule to identify height outliers in the electronic health records (EHR) of children.We constructed 2 independent cohorts of children 2 to 8 years old to train and validate a model predicting heights from age, gender, race and weight with monotonic Bayesian additive regression trees. The training cohort consisted of 1376 children where outliers were unknown. The testing cohort consisted of 318 patients that were manually reviewed retrospectively to identify height outliers.The amount of variation explained in height values by our model, R2 , was 82.2% and 75.3% in the training and testing cohorts, respectively. The discriminatory ability to assess height outliers in the testing cohort as assessed by the area under the receiver operating characteristic curve was excellent, 0.841. Based on a relatively aggressive cutoff of 0.075, the outlier sensitivity is 0.713, the specificity 0.793; the positive predictive value 0.615 and the negative predictive value is 0.856.We have developed a new reliable, largely automated, outlier detection method which is applicable to the identification of height outliers in the pediatric EHR. This methodology can be applied to assess the veracity of height measurements ensuring reliable indices of body proportionality such as body mass index." @default.
- W4281638536 created "2022-06-13" @default.
- W4281638536 creator A5000468540 @default.
- W4281638536 creator A5013012729 @default.
- W4281638536 creator A5058191232 @default.
- W4281638536 creator A5065373706 @default.
- W4281638536 creator A5066914584 @default.
- W4281638536 creator A5084631368 @default.
- W4281638536 date "2022-06-01" @default.
- W4281638536 modified "2023-09-26" @default.
- W4281638536 title "Novel Pediatric Height Outlier Detection Methodology for Electronic Health Records via Machine Learning With Monotonic Bayesian Additive Regression Trees" @default.
- W4281638536 cites W1490488996 @default.
- W4281638536 cites W1980276147 @default.
- W4281638536 cites W2122707249 @default.
- W4281638536 cites W2130874036 @default.
- W4281638536 cites W2157037004 @default.
- W4281638536 cites W2204710646 @default.
- W4281638536 cites W2784306935 @default.
- W4281638536 cites W2920996574 @default.
- W4281638536 cites W2951635356 @default.
- W4281638536 cites W3036353417 @default.
- W4281638536 cites W3154559866 @default.
- W4281638536 doi "https://doi.org/10.1097/mpg.0000000000003492" @default.
- W4281638536 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35641892" @default.
- W4281638536 hasPublicationYear "2022" @default.
- W4281638536 type Work @default.
- W4281638536 citedByCount "0" @default.
- W4281638536 crossrefType "journal-article" @default.
- W4281638536 hasAuthorship W4281638536A5000468540 @default.
- W4281638536 hasAuthorship W4281638536A5013012729 @default.
- W4281638536 hasAuthorship W4281638536A5058191232 @default.
- W4281638536 hasAuthorship W4281638536A5065373706 @default.
- W4281638536 hasAuthorship W4281638536A5066914584 @default.
- W4281638536 hasAuthorship W4281638536A5084631368 @default.
- W4281638536 hasConcept C105795698 @default.
- W4281638536 hasConcept C107673813 @default.
- W4281638536 hasConcept C119857082 @default.
- W4281638536 hasConcept C121332964 @default.
- W4281638536 hasConcept C126322002 @default.
- W4281638536 hasConcept C152877465 @default.
- W4281638536 hasConcept C154945302 @default.
- W4281638536 hasConcept C160735492 @default.
- W4281638536 hasConcept C162324750 @default.
- W4281638536 hasConcept C2778217198 @default.
- W4281638536 hasConcept C2780221984 @default.
- W4281638536 hasConcept C3019952477 @default.
- W4281638536 hasConcept C3020144179 @default.
- W4281638536 hasConcept C33923547 @default.
- W4281638536 hasConcept C41008148 @default.
- W4281638536 hasConcept C48921125 @default.
- W4281638536 hasConcept C50522688 @default.
- W4281638536 hasConcept C58471807 @default.
- W4281638536 hasConcept C62520636 @default.
- W4281638536 hasConcept C71924100 @default.
- W4281638536 hasConcept C72563966 @default.
- W4281638536 hasConcept C739882 @default.
- W4281638536 hasConcept C79337645 @default.
- W4281638536 hasConcept C83546350 @default.
- W4281638536 hasConceptScore W4281638536C105795698 @default.
- W4281638536 hasConceptScore W4281638536C107673813 @default.
- W4281638536 hasConceptScore W4281638536C119857082 @default.
- W4281638536 hasConceptScore W4281638536C121332964 @default.
- W4281638536 hasConceptScore W4281638536C126322002 @default.
- W4281638536 hasConceptScore W4281638536C152877465 @default.
- W4281638536 hasConceptScore W4281638536C154945302 @default.
- W4281638536 hasConceptScore W4281638536C160735492 @default.
- W4281638536 hasConceptScore W4281638536C162324750 @default.
- W4281638536 hasConceptScore W4281638536C2778217198 @default.
- W4281638536 hasConceptScore W4281638536C2780221984 @default.
- W4281638536 hasConceptScore W4281638536C3019952477 @default.
- W4281638536 hasConceptScore W4281638536C3020144179 @default.
- W4281638536 hasConceptScore W4281638536C33923547 @default.
- W4281638536 hasConceptScore W4281638536C41008148 @default.
- W4281638536 hasConceptScore W4281638536C48921125 @default.
- W4281638536 hasConceptScore W4281638536C50522688 @default.
- W4281638536 hasConceptScore W4281638536C58471807 @default.
- W4281638536 hasConceptScore W4281638536C62520636 @default.
- W4281638536 hasConceptScore W4281638536C71924100 @default.
- W4281638536 hasConceptScore W4281638536C72563966 @default.
- W4281638536 hasConceptScore W4281638536C739882 @default.
- W4281638536 hasConceptScore W4281638536C79337645 @default.
- W4281638536 hasConceptScore W4281638536C83546350 @default.
- W4281638536 hasIssue "2" @default.
- W4281638536 hasLocation W42816385361 @default.
- W4281638536 hasLocation W42816385362 @default.
- W4281638536 hasOpenAccess W4281638536 @default.
- W4281638536 hasPrimaryLocation W42816385361 @default.
- W4281638536 hasRelatedWork W1980913430 @default.
- W4281638536 hasRelatedWork W2018697919 @default.
- W4281638536 hasRelatedWork W2094290469 @default.
- W4281638536 hasRelatedWork W2325374573 @default.
- W4281638536 hasRelatedWork W2375721435 @default.
- W4281638536 hasRelatedWork W3012654478 @default.
- W4281638536 hasRelatedWork W3122861356 @default.
- W4281638536 hasRelatedWork W4252743528 @default.
- W4281638536 hasRelatedWork W4290879003 @default.
- W4281638536 hasRelatedWork W2738033194 @default.
- W4281638536 hasVolume "75" @default.