Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281639162> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4281639162 abstract "Introduction: Deep learning methods, commonly called artificial intelligence (AI) , have been widely adopted in medical research. Reinforcement learning is a particularly promising AI tool that can generate optimal strategies based on non-optimized training data. The aim of the currentstudy was to develop and validate a reinforcement learning algorithm for determining optimal glycemic targets for sepsis patients in the ICU. Methods: We developed and validated a clinical decision support model that provided an individualized daily glycemic target for each critically ill patient based on the retrospective analysis of two independent ICU databases, Medical Information for Mart for Intensive Care III (MIMIC-III) and the eICU Collaborative Research Database (eICU-CRD) . We used a Markov decision process (MDP) to formulate sequential decision-making. The discrete state was generated by quantizing all patients’ longitudinal health records using a k-means clustering algorithm. To evaluate clinician policy, we used the temporal-difference (TD) learning method. To learn AI policy, we generated a random action policy, updated the value function, and used the value function to update the policy. Results: Average return per patient was significantly higher in survivors than non-survivors, and a significant inverse relationship was observed between AI performance return and estimated 90-day mortality. Contrary to the current guidelines that recommend maintaining a glycemic range of 140-180 mg during ICU admission, AI most often recommended a glycemic range of 120-139 mg/dL for ICU patients. Analysis of mortality rate according to mean glucose level during ICU admission revealed that the greater the difference between AI recommendation and real glycemic control range, the higher the mortality rate. Conclusion: These results suggest that tighter glycemic control, guided by a similar AI policy for daily individualized optimal glycemic target, may help improve ICU patient survival. Disclosure J.Yun: None. G.Lee: None. J.Kim: None. S.Ko: None. Y.Ahn: None. D.Kim: n/a. K.Song: n/a." @default.
- W4281639162 created "2022-06-13" @default.
- W4281639162 creator A5003129627 @default.
- W4281639162 creator A5022137977 @default.
- W4281639162 creator A5024417355 @default.
- W4281639162 creator A5029589348 @default.
- W4281639162 creator A5031421320 @default.
- W4281639162 creator A5034451946 @default.
- W4281639162 creator A5089716201 @default.
- W4281639162 date "2022-06-01" @default.
- W4281639162 modified "2023-09-26" @default.
- W4281639162 title "650-P: Artificial Intelligence and Individualized Optimal Glycemic Target in ICU Patients" @default.
- W4281639162 doi "https://doi.org/10.2337/db22-650-p" @default.
- W4281639162 hasPublicationYear "2022" @default.
- W4281639162 type Work @default.
- W4281639162 citedByCount "0" @default.
- W4281639162 crossrefType "journal-article" @default.
- W4281639162 hasAuthorship W4281639162A5003129627 @default.
- W4281639162 hasAuthorship W4281639162A5022137977 @default.
- W4281639162 hasAuthorship W4281639162A5024417355 @default.
- W4281639162 hasAuthorship W4281639162A5029589348 @default.
- W4281639162 hasAuthorship W4281639162A5031421320 @default.
- W4281639162 hasAuthorship W4281639162A5034451946 @default.
- W4281639162 hasAuthorship W4281639162A5089716201 @default.
- W4281639162 hasConcept C105795698 @default.
- W4281639162 hasConcept C106189395 @default.
- W4281639162 hasConcept C119857082 @default.
- W4281639162 hasConcept C126322002 @default.
- W4281639162 hasConcept C134018914 @default.
- W4281639162 hasConcept C154945302 @default.
- W4281639162 hasConcept C159886148 @default.
- W4281639162 hasConcept C177713679 @default.
- W4281639162 hasConcept C195910791 @default.
- W4281639162 hasConcept C2780473172 @default.
- W4281639162 hasConcept C33923547 @default.
- W4281639162 hasConcept C41008148 @default.
- W4281639162 hasConcept C555293320 @default.
- W4281639162 hasConcept C71924100 @default.
- W4281639162 hasConcept C97541855 @default.
- W4281639162 hasConceptScore W4281639162C105795698 @default.
- W4281639162 hasConceptScore W4281639162C106189395 @default.
- W4281639162 hasConceptScore W4281639162C119857082 @default.
- W4281639162 hasConceptScore W4281639162C126322002 @default.
- W4281639162 hasConceptScore W4281639162C134018914 @default.
- W4281639162 hasConceptScore W4281639162C154945302 @default.
- W4281639162 hasConceptScore W4281639162C159886148 @default.
- W4281639162 hasConceptScore W4281639162C177713679 @default.
- W4281639162 hasConceptScore W4281639162C195910791 @default.
- W4281639162 hasConceptScore W4281639162C2780473172 @default.
- W4281639162 hasConceptScore W4281639162C33923547 @default.
- W4281639162 hasConceptScore W4281639162C41008148 @default.
- W4281639162 hasConceptScore W4281639162C555293320 @default.
- W4281639162 hasConceptScore W4281639162C71924100 @default.
- W4281639162 hasConceptScore W4281639162C97541855 @default.
- W4281639162 hasIssue "Supplement_1" @default.
- W4281639162 hasLocation W42816391621 @default.
- W4281639162 hasOpenAccess W4281639162 @default.
- W4281639162 hasPrimaryLocation W42816391621 @default.
- W4281639162 hasRelatedWork W1771697193 @default.
- W4281639162 hasRelatedWork W2809005670 @default.
- W4281639162 hasRelatedWork W2963561234 @default.
- W4281639162 hasRelatedWork W3022038857 @default.
- W4281639162 hasRelatedWork W3162151154 @default.
- W4281639162 hasRelatedWork W3173482257 @default.
- W4281639162 hasRelatedWork W3213838085 @default.
- W4281639162 hasRelatedWork W4226437174 @default.
- W4281639162 hasRelatedWork W4313591620 @default.
- W4281639162 hasRelatedWork W4319083788 @default.
- W4281639162 hasVolume "71" @default.
- W4281639162 isParatext "false" @default.
- W4281639162 isRetracted "false" @default.
- W4281639162 workType "article" @default.