Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281639440> ?p ?o ?g. }
- W4281639440 endingPage "96" @default.
- W4281639440 startingPage "76" @default.
- W4281639440 abstract "Abstract In the era of Unmanned Aerial Systems (UAS), an onboard autopilot occupies a prominent place and is inevitable for many of their modern applications. The efficacy of autopilot heavily relies upon the accuracy of the sensors employed and the capability of the onboard flight controller. In general, aerodynamic behaviour and flight dynamic capabilities of Unmanned Aerial Vehicles (UAVs) govern the selection and the design of flight controllers. Precise modeling of linear aerodynamic characteristics from flight data can be achieved using many of the existing classical parameter estimation techniques such as Output Error Method (OEM), Equation Error Method (EEM), and Filter Error Method (FEM). However, all the classical methods may not be readily applicable for aerodynamic modeling in nonlinear flight envelopes. The current manuscript is an attempt to exploit the capabilities of the Artificial Intelligence (AI) technique, named Particle Swarm Optimisation (PSO), in combination with Least Squares (LS) cost function to perform linear as well as nonlinear aerodynamic parameter estimation. The aforementioned task is accomplished by considering flight data from manoeuvers pertaining to linear angles of attack, moderate and near stall flight envelopes of two different UAVs with cropped delta planform geometry. Parameters estimated using the proposed LS-PSO method are consistent with minimum standard deviation and are on a par with OEM estimates. The proposed LS-PSO method enhances the capabilities of LS-based EEM while estimating stall characteristic parameters, which was not possible with LS alone. The longitudinal and lateral-directional static parameters estimated from the full-scale wind tunnel testing of the two UAVs were also used to corroborate the results obtained from the flight data using the LS-PSO method." @default.
- W4281639440 created "2022-06-13" @default.
- W4281639440 creator A5003608838 @default.
- W4281639440 creator A5066580039 @default.
- W4281639440 creator A5084560364 @default.
- W4281639440 date "2022-05-04" @default.
- W4281639440 modified "2023-09-23" @default.
- W4281639440 title "System identification of cropped delta UAVs from flight test methods using particle Swarm-Optimisation-based estimation" @default.
- W4281639440 cites W1502135413 @default.
- W4281639440 cites W1971213438 @default.
- W4281639440 cites W2000505511 @default.
- W4281639440 cites W2020435920 @default.
- W4281639440 cites W2048193979 @default.
- W4281639440 cites W2089327447 @default.
- W4281639440 cites W2153660803 @default.
- W4281639440 cites W2168862853 @default.
- W4281639440 cites W2281723666 @default.
- W4281639440 cites W2313638771 @default.
- W4281639440 cites W2317464865 @default.
- W4281639440 cites W2319843255 @default.
- W4281639440 cites W2321566852 @default.
- W4281639440 cites W2323638122 @default.
- W4281639440 cites W2329398778 @default.
- W4281639440 cites W2330184551 @default.
- W4281639440 cites W2470025201 @default.
- W4281639440 cites W2478526993 @default.
- W4281639440 cites W2487992469 @default.
- W4281639440 cites W2518795666 @default.
- W4281639440 cites W2538275670 @default.
- W4281639440 cites W2548524679 @default.
- W4281639440 cites W2550426276 @default.
- W4281639440 cites W2573709304 @default.
- W4281639440 cites W2767852332 @default.
- W4281639440 cites W2798880694 @default.
- W4281639440 cites W2799945245 @default.
- W4281639440 cites W2810596543 @default.
- W4281639440 cites W2955503857 @default.
- W4281639440 cites W2968986423 @default.
- W4281639440 cites W2973190639 @default.
- W4281639440 cites W3093961477 @default.
- W4281639440 cites W4243482721 @default.
- W4281639440 cites W83986156 @default.
- W4281639440 doi "https://doi.org/10.1017/aer.2022.46" @default.
- W4281639440 hasPublicationYear "2022" @default.
- W4281639440 type Work @default.
- W4281639440 citedByCount "1" @default.
- W4281639440 countsByYear W42816394402023 @default.
- W4281639440 crossrefType "journal-article" @default.
- W4281639440 hasAuthorship W4281639440A5003608838 @default.
- W4281639440 hasAuthorship W4281639440A5066580039 @default.
- W4281639440 hasAuthorship W4281639440A5084560364 @default.
- W4281639440 hasConcept C11413529 @default.
- W4281639440 hasConcept C121332964 @default.
- W4281639440 hasConcept C127413603 @default.
- W4281639440 hasConcept C133731056 @default.
- W4281639440 hasConcept C13393347 @default.
- W4281639440 hasConcept C146978453 @default.
- W4281639440 hasConcept C154945302 @default.
- W4281639440 hasConcept C158622935 @default.
- W4281639440 hasConcept C18020424 @default.
- W4281639440 hasConcept C206923515 @default.
- W4281639440 hasConcept C2775924081 @default.
- W4281639440 hasConcept C2777943292 @default.
- W4281639440 hasConcept C41008148 @default.
- W4281639440 hasConcept C44154836 @default.
- W4281639440 hasConcept C47446073 @default.
- W4281639440 hasConcept C59681308 @default.
- W4281639440 hasConcept C62520636 @default.
- W4281639440 hasConcept C85617194 @default.
- W4281639440 hasConceptScore W4281639440C11413529 @default.
- W4281639440 hasConceptScore W4281639440C121332964 @default.
- W4281639440 hasConceptScore W4281639440C127413603 @default.
- W4281639440 hasConceptScore W4281639440C133731056 @default.
- W4281639440 hasConceptScore W4281639440C13393347 @default.
- W4281639440 hasConceptScore W4281639440C146978453 @default.
- W4281639440 hasConceptScore W4281639440C154945302 @default.
- W4281639440 hasConceptScore W4281639440C158622935 @default.
- W4281639440 hasConceptScore W4281639440C18020424 @default.
- W4281639440 hasConceptScore W4281639440C206923515 @default.
- W4281639440 hasConceptScore W4281639440C2775924081 @default.
- W4281639440 hasConceptScore W4281639440C2777943292 @default.
- W4281639440 hasConceptScore W4281639440C41008148 @default.
- W4281639440 hasConceptScore W4281639440C44154836 @default.
- W4281639440 hasConceptScore W4281639440C47446073 @default.
- W4281639440 hasConceptScore W4281639440C59681308 @default.
- W4281639440 hasConceptScore W4281639440C62520636 @default.
- W4281639440 hasConceptScore W4281639440C85617194 @default.
- W4281639440 hasIssue "1307" @default.
- W4281639440 hasLocation W42816394401 @default.
- W4281639440 hasOpenAccess W4281639440 @default.
- W4281639440 hasPrimaryLocation W42816394401 @default.
- W4281639440 hasRelatedWork W1913404316 @default.
- W4281639440 hasRelatedWork W1995101794 @default.
- W4281639440 hasRelatedWork W2031760409 @default.
- W4281639440 hasRelatedWork W2040452488 @default.
- W4281639440 hasRelatedWork W2086543159 @default.
- W4281639440 hasRelatedWork W2362343648 @default.
- W4281639440 hasRelatedWork W2568098841 @default.