Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281639753> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4281639753 abstract "<sec> <title>BACKGROUND</title> Modern medicine generates unstructured data containing a large amount of information. Extracting useful knowledge from this data and making scientific decisions for diagnosing and treating diseases have become increasingly necessary. Unstructured data, such as in the Medical Information Mart for Intensive Care III (MIMIC-III) dataset, contain several ambiguous words demonstrating the subjectivity of doctors. These data can be used to further improve the accuracy of medical support system assessments. </sec> <sec> <title>OBJECTIVE</title> We propose using fuzzy c-means (FCM) method and Gauss membership to quantify the subjective words in the clinical medical dataset MIMIC-III. </sec> <sec> <title>METHODS</title> Using 381,091 radiology reports collected from MIMIC-III, we extracted words representing the subjective degree from the text and converted them into corresponding membership intervals based on the words. </sec> <sec> <title>RESULTS</title> Consequently, the words representing each degree of each disease had a range of corresponding values. Examples of membership medians were atelectasis (2.971), pneumonia (3.121), pneumothorax (2.899), pulmonary edema (3.051), and pulmonary embolus (2.435). These membership sections can determine the symptoms of each disease. </sec> <sec> <title>CONCLUSIONS</title> In this study, we used the FCM and Gaussian functions to extract words from the MIMIC-III, which represent a subjective degree and cannot be processed by a computer, and performed fuzzy processing on them. It was concluded that words representing the degree in an English interpreted report can be extracted and quantified. The use of these words in medical support systems may improve diagnostic accuracy. </sec>" @default.
- W4281639753 created "2022-06-13" @default.
- W4281639753 creator A5003099565 @default.
- W4281639753 creator A5005606951 @default.
- W4281639753 creator A5035360381 @default.
- W4281639753 creator A5052472028 @default.
- W4281639753 creator A5063346362 @default.
- W4281639753 creator A5085530030 @default.
- W4281639753 date "2022-04-13" @default.
- W4281639753 modified "2023-09-23" @default.
- W4281639753 title "Fuzzy c-means for extraction and quantification of words representing degrees of diseases (Preprint)" @default.
- W4281639753 cites W1976038582 @default.
- W4281639753 cites W1990368529 @default.
- W4281639753 cites W1995450389 @default.
- W4281639753 cites W2047452505 @default.
- W4281639753 cites W2158958709 @default.
- W4281639753 cites W2396881363 @default.
- W4281639753 cites W2416919433 @default.
- W4281639753 cites W2469314752 @default.
- W4281639753 cites W2488984245 @default.
- W4281639753 cites W2625625371 @default.
- W4281639753 cites W2767344512 @default.
- W4281639753 cites W2778867749 @default.
- W4281639753 cites W2802578678 @default.
- W4281639753 cites W2891469329 @default.
- W4281639753 cites W2907431210 @default.
- W4281639753 cites W2909707119 @default.
- W4281639753 cites W2912971066 @default.
- W4281639753 cites W2963923670 @default.
- W4281639753 cites W4211007335 @default.
- W4281639753 cites W4231839683 @default.
- W4281639753 doi "https://doi.org/10.2196/preprints.38677" @default.
- W4281639753 hasPublicationYear "2022" @default.
- W4281639753 type Work @default.
- W4281639753 citedByCount "0" @default.
- W4281639753 crossrefType "posted-content" @default.
- W4281639753 hasAuthorship W4281639753A5003099565 @default.
- W4281639753 hasAuthorship W4281639753A5005606951 @default.
- W4281639753 hasAuthorship W4281639753A5035360381 @default.
- W4281639753 hasAuthorship W4281639753A5052472028 @default.
- W4281639753 hasAuthorship W4281639753A5063346362 @default.
- W4281639753 hasAuthorship W4281639753A5085530030 @default.
- W4281639753 hasConcept C121332964 @default.
- W4281639753 hasConcept C124101348 @default.
- W4281639753 hasConcept C153180895 @default.
- W4281639753 hasConcept C154945302 @default.
- W4281639753 hasConcept C204321447 @default.
- W4281639753 hasConcept C23123220 @default.
- W4281639753 hasConcept C24890656 @default.
- W4281639753 hasConcept C2775997480 @default.
- W4281639753 hasConcept C41008148 @default.
- W4281639753 hasConcept C58166 @default.
- W4281639753 hasConceptScore W4281639753C121332964 @default.
- W4281639753 hasConceptScore W4281639753C124101348 @default.
- W4281639753 hasConceptScore W4281639753C153180895 @default.
- W4281639753 hasConceptScore W4281639753C154945302 @default.
- W4281639753 hasConceptScore W4281639753C204321447 @default.
- W4281639753 hasConceptScore W4281639753C23123220 @default.
- W4281639753 hasConceptScore W4281639753C24890656 @default.
- W4281639753 hasConceptScore W4281639753C2775997480 @default.
- W4281639753 hasConceptScore W4281639753C41008148 @default.
- W4281639753 hasConceptScore W4281639753C58166 @default.
- W4281639753 hasLocation W42816397531 @default.
- W4281639753 hasOpenAccess W4281639753 @default.
- W4281639753 hasPrimaryLocation W42816397531 @default.
- W4281639753 hasRelatedWork W2119214692 @default.
- W4281639753 hasRelatedWork W2144190808 @default.
- W4281639753 hasRelatedWork W2357241418 @default.
- W4281639753 hasRelatedWork W2366644548 @default.
- W4281639753 hasRelatedWork W2368651715 @default.
- W4281639753 hasRelatedWork W2376314740 @default.
- W4281639753 hasRelatedWork W2384888906 @default.
- W4281639753 hasRelatedWork W2611614995 @default.
- W4281639753 hasRelatedWork W2789919619 @default.
- W4281639753 hasRelatedWork W3107474891 @default.
- W4281639753 isParatext "false" @default.
- W4281639753 isRetracted "false" @default.
- W4281639753 workType "article" @default.