Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281639860> ?p ?o ?g. }
- W4281639860 endingPage "e061469" @default.
- W4281639860 startingPage "e061469" @default.
- W4281639860 abstract "Configurational methods are increasingly being used in health services research.To use configurational analysis and logistic regression within a single data set to compare results from the two methods.Secondary analysis of an observational cohort; a split-sample design involved randomly dividing patients into training and validation samples.Patients who had a transient ischaemic attack (TIA) in US Department of Veterans Affairs hospitals.The patient outcome was the combined endpoint of all-cause mortality or recurrent ischaemic stroke within 1 year post-TIA. The quality-of-care outcome was the without-fail rate (proportion of patients who received all processes for which they were eligible, among seven processes).For the recurrent stroke or death outcome, configurational analysis yielded a three-pathway model identifying a set of (validation sample) patients where the prevalence was 15.0% (83/552), substantially higher than the overall sample prevalence of 11.0% (relative difference, 36%). The configurational model had a sensitivity (coverage) of 84.7% and specificity of 40.6%. The logistic regression model identified six factors associated with the combined endpoint (c-statistic, 0.632; sensitivity, 63.3%; specificity, 63.1%). None of these factors were elements of the configurational model. For the quality outcome, configurational analysis yielded a single-pathway model identifying a set of (validation sample) patients where the without-fail rate was 64.3% (231/359), nearly twice the overall sample prevalence (33.7%). The configurational model had a sensitivity (coverage) of 77.3% and specificity of 78.2%. The logistic regression model identified seven factors associated with the without-fail rate (c-statistic, 0.822; sensitivity, 80.3%; specificity, 84.2%). Two of these factors were also identified in the configurational analysis.Configurational analysis and logistic regression represent different methods that can enhance our understanding of a data set when paired together. Configurational models optimise sensitivity with relatively few conditions. Logistic regression models discriminate cases from controls and provided inferential relationships between outcomes and independent variables." @default.
- W4281639860 created "2022-06-13" @default.
- W4281639860 creator A5012541607 @default.
- W4281639860 creator A5016882920 @default.
- W4281639860 creator A5027407292 @default.
- W4281639860 creator A5042973046 @default.
- W4281639860 creator A5055817856 @default.
- W4281639860 creator A5073429845 @default.
- W4281639860 creator A5082080121 @default.
- W4281639860 date "2022-06-01" @default.
- W4281639860 modified "2023-09-26" @default.
- W4281639860 title "Pairing regression and configurational analysis in health services research: modelling outcomes in an observational cohort using a split-sample design" @default.
- W4281639860 cites W1480729244 @default.
- W4281639860 cites W1497712153 @default.
- W4281639860 cites W1547708675 @default.
- W4281639860 cites W1982245010 @default.
- W4281639860 cites W2000445173 @default.
- W4281639860 cites W2008706768 @default.
- W4281639860 cites W2033925475 @default.
- W4281639860 cites W2043956967 @default.
- W4281639860 cites W2074932800 @default.
- W4281639860 cites W2077519810 @default.
- W4281639860 cites W2080458255 @default.
- W4281639860 cites W2107582726 @default.
- W4281639860 cites W2116656725 @default.
- W4281639860 cites W2119221711 @default.
- W4281639860 cites W2124247204 @default.
- W4281639860 cites W2126019552 @default.
- W4281639860 cites W2127985968 @default.
- W4281639860 cites W2154472033 @default.
- W4281639860 cites W2161325913 @default.
- W4281639860 cites W2323255008 @default.
- W4281639860 cites W2323866172 @default.
- W4281639860 cites W2356559998 @default.
- W4281639860 cites W2547661992 @default.
- W4281639860 cites W2755373833 @default.
- W4281639860 cites W2793469578 @default.
- W4281639860 cites W2804392394 @default.
- W4281639860 cites W2904835188 @default.
- W4281639860 cites W2909762065 @default.
- W4281639860 cites W2955758012 @default.
- W4281639860 cites W2963437490 @default.
- W4281639860 cites W2990637763 @default.
- W4281639860 cites W3011008216 @default.
- W4281639860 cites W3028342076 @default.
- W4281639860 cites W3028905431 @default.
- W4281639860 cites W3084192352 @default.
- W4281639860 cites W3093269239 @default.
- W4281639860 cites W3093763070 @default.
- W4281639860 cites W3113104601 @default.
- W4281639860 cites W3153461184 @default.
- W4281639860 cites W3163553170 @default.
- W4281639860 cites W3175979404 @default.
- W4281639860 cites W4213451875 @default.
- W4281639860 cites W4254011500 @default.
- W4281639860 cites W4361865037 @default.
- W4281639860 doi "https://doi.org/10.1136/bmjopen-2022-061469" @default.
- W4281639860 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35672067" @default.
- W4281639860 hasPublicationYear "2022" @default.
- W4281639860 type Work @default.
- W4281639860 citedByCount "0" @default.
- W4281639860 crossrefType "journal-article" @default.
- W4281639860 hasAuthorship W4281639860A5012541607 @default.
- W4281639860 hasAuthorship W4281639860A5016882920 @default.
- W4281639860 hasAuthorship W4281639860A5027407292 @default.
- W4281639860 hasAuthorship W4281639860A5042973046 @default.
- W4281639860 hasAuthorship W4281639860A5055817856 @default.
- W4281639860 hasAuthorship W4281639860A5073429845 @default.
- W4281639860 hasAuthorship W4281639860A5082080121 @default.
- W4281639860 hasBestOaLocation W42816398601 @default.
- W4281639860 hasConcept C105795698 @default.
- W4281639860 hasConcept C126322002 @default.
- W4281639860 hasConcept C129848803 @default.
- W4281639860 hasConcept C151956035 @default.
- W4281639860 hasConcept C152877465 @default.
- W4281639860 hasConcept C201903717 @default.
- W4281639860 hasConcept C23131810 @default.
- W4281639860 hasConcept C33923547 @default.
- W4281639860 hasConcept C71924100 @default.
- W4281639860 hasConcept C72563966 @default.
- W4281639860 hasConcept C89128539 @default.
- W4281639860 hasConceptScore W4281639860C105795698 @default.
- W4281639860 hasConceptScore W4281639860C126322002 @default.
- W4281639860 hasConceptScore W4281639860C129848803 @default.
- W4281639860 hasConceptScore W4281639860C151956035 @default.
- W4281639860 hasConceptScore W4281639860C152877465 @default.
- W4281639860 hasConceptScore W4281639860C201903717 @default.
- W4281639860 hasConceptScore W4281639860C23131810 @default.
- W4281639860 hasConceptScore W4281639860C33923547 @default.
- W4281639860 hasConceptScore W4281639860C71924100 @default.
- W4281639860 hasConceptScore W4281639860C72563966 @default.
- W4281639860 hasConceptScore W4281639860C89128539 @default.
- W4281639860 hasFunder F4320309610 @default.
- W4281639860 hasIssue "6" @default.
- W4281639860 hasLocation W42816398601 @default.
- W4281639860 hasLocation W42816398602 @default.
- W4281639860 hasLocation W42816398603 @default.
- W4281639860 hasLocation W42816398604 @default.