Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281640952> ?p ?o ?g. }
- W4281640952 abstract "Abstract Runoff information and its dynamics are critical for supporting watershed management; however, spatio-temporal data about runoff is rare or unavailable in data-scarce regions. Information about the performance of remote sensing-based runoff and its potential application is limitedly known. In data-scarce regions, this condition impedes comprehensive watershed assessment especially in the midst of climate change impacts. This study examined the performance of globally available monthly runoff dataset provided by TerraClimate at ~ 4 km spatial resolution and employed them to assess the runoff dynamics in a humid tropic watershed. Monthly TerraClimate data shows a moderate performance with an r of 0.63, RMSE of 57–127 mm/month and NRMSE of 18–30% to the simulated runoff from a well-calibrated model. The upper region of Brantas watershed was found to be the hotspot of high runoff. About 25% of the study area belongs to high runoff (0–33rd percentile). Over the last two decades, runoff has been slightly increased across the study area. Green vegetation fraction (GVF), precipitation, and topography are critical for regulating runoff dynamics. While topography and precipitation impact on runoff are straightforward, the GVF’s role is complex and site-specific. High runoff was found mostly to be associated with high precipitation and steep slope. GVF appears to be less effective in representing ground cover against runoff generation due to high variability of actual ground cover types. Using time-series and change vector analysis (CVA) of runoff and GVF, the dynamics of watershed condition was examined. Long-term CVA analysis also found that the condition in Brantas watershed was fluctuated with slight increase in impaired condition. The study exemplified the potential use of the remote sensing-based runoff data in a tropical data-scarce region. Despite limitation of the runoff data due to its moderate performance, the globally available monthly runoff data from TerraClimate can be used to support regional water resource assessment in data-scare regions. Future improvement that includes downscaling and use of machine learning can be considered to improve the remotely sensed runoff data to deliver the bigger benefits of such data." @default.
- W4281640952 created "2022-06-13" @default.
- W4281640952 creator A5031801570 @default.
- W4281640952 creator A5057216057 @default.
- W4281640952 date "2022-06-02" @default.
- W4281640952 modified "2023-10-16" @default.
- W4281640952 title "Runoff observation in a tropical Brantas watershed as observed from long-term globally available TerraClimate data 2001–2020" @default.
- W4281640952 cites W1171805760 @default.
- W4281640952 cites W1531683302 @default.
- W4281640952 cites W1545435143 @default.
- W4281640952 cites W1577178214 @default.
- W4281640952 cites W1588713494 @default.
- W4281640952 cites W1615591645 @default.
- W4281640952 cites W1885855140 @default.
- W4281640952 cites W1973364186 @default.
- W4281640952 cites W1990151882 @default.
- W4281640952 cites W1990252483 @default.
- W4281640952 cites W1997211490 @default.
- W4281640952 cites W2000186607 @default.
- W4281640952 cites W2001866236 @default.
- W4281640952 cites W2004536995 @default.
- W4281640952 cites W2007820927 @default.
- W4281640952 cites W2016544738 @default.
- W4281640952 cites W2016952331 @default.
- W4281640952 cites W2024475704 @default.
- W4281640952 cites W2026163358 @default.
- W4281640952 cites W2038441434 @default.
- W4281640952 cites W2046211138 @default.
- W4281640952 cites W2073806194 @default.
- W4281640952 cites W2076341908 @default.
- W4281640952 cites W2080468149 @default.
- W4281640952 cites W2126282903 @default.
- W4281640952 cites W2130708878 @default.
- W4281640952 cites W2138123179 @default.
- W4281640952 cites W2140025576 @default.
- W4281640952 cites W2140668406 @default.
- W4281640952 cites W2194936099 @default.
- W4281640952 cites W2278217184 @default.
- W4281640952 cites W2281483701 @default.
- W4281640952 cites W2285137062 @default.
- W4281640952 cites W2292542896 @default.
- W4281640952 cites W2399995034 @default.
- W4281640952 cites W2512314569 @default.
- W4281640952 cites W2512486309 @default.
- W4281640952 cites W2537682884 @default.
- W4281640952 cites W2562865899 @default.
- W4281640952 cites W2734952595 @default.
- W4281640952 cites W2757897275 @default.
- W4281640952 cites W2763430520 @default.
- W4281640952 cites W2766345374 @default.
- W4281640952 cites W2784327149 @default.
- W4281640952 cites W2794342813 @default.
- W4281640952 cites W2795451478 @default.
- W4281640952 cites W2799704872 @default.
- W4281640952 cites W2806748874 @default.
- W4281640952 cites W2808087091 @default.
- W4281640952 cites W2890063880 @default.
- W4281640952 cites W2892963442 @default.
- W4281640952 cites W2896224553 @default.
- W4281640952 cites W2900858962 @default.
- W4281640952 cites W2904782506 @default.
- W4281640952 cites W2921518683 @default.
- W4281640952 cites W2945779774 @default.
- W4281640952 cites W2949749559 @default.
- W4281640952 cites W2959877207 @default.
- W4281640952 cites W2970776560 @default.
- W4281640952 cites W2972728705 @default.
- W4281640952 cites W2976553160 @default.
- W4281640952 cites W2979388509 @default.
- W4281640952 cites W2996070409 @default.
- W4281640952 cites W3006628123 @default.
- W4281640952 cites W3031510551 @default.
- W4281640952 cites W3038019638 @default.
- W4281640952 cites W3041746328 @default.
- W4281640952 cites W3088517246 @default.
- W4281640952 cites W3113789520 @default.
- W4281640952 cites W3156602340 @default.
- W4281640952 cites W3163767535 @default.
- W4281640952 cites W3193808210 @default.
- W4281640952 cites W4207025788 @default.
- W4281640952 cites W4242358719 @default.
- W4281640952 cites W4254017541 @default.
- W4281640952 doi "https://doi.org/10.1186/s40677-022-00214-5" @default.
- W4281640952 hasPublicationYear "2022" @default.
- W4281640952 type Work @default.
- W4281640952 citedByCount "4" @default.
- W4281640952 countsByYear W42816409522022 @default.
- W4281640952 countsByYear W42816409522023 @default.
- W4281640952 crossrefType "journal-article" @default.
- W4281640952 hasAuthorship W4281640952A5031801570 @default.
- W4281640952 hasAuthorship W4281640952A5057216057 @default.
- W4281640952 hasBestOaLocation W42816409521 @default.
- W4281640952 hasConcept C107054158 @default.
- W4281640952 hasConcept C119857082 @default.
- W4281640952 hasConcept C124203675 @default.
- W4281640952 hasConcept C127313418 @default.
- W4281640952 hasConcept C150547873 @default.
- W4281640952 hasConcept C151844085 @default.
- W4281640952 hasConcept C153294291 @default.
- W4281640952 hasConcept C187320778 @default.