Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281641471> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4281641471 abstract "Sparse linear regression methods including the well-known LASSO and the Dantzig selector have become ubiquitous in the engineering practice, including in medical imaging. Among other tasks, they have been successfully applied for the estimation of neuronal activity from functional magnetic resonance data without prior knowledge of the stimulus or activation timing, utilizing an approximate knowledge of the hemodynamic response to local neuronal activity. These methods work by generating a parametric family of solutions with different sparsity, among which an ultimate choice is made using an information criteria. We propose a novel approach, that instead of selecting a single option from the family of regularized solutions, utilizes the whole family of such sparse regression solutions. Namely, their ensemble provides a first approximation of probability of activation at each time-point, and together with the conditional neuronal activity distributions estimated with the theory of mixtures with varying concentrations, they serve as the inputs to a Bayes classifier eventually deciding on the verity of activation at each time-point. We show in extensive numerical simulations that this new method performs favourably in comparison with standard approaches in a range of realistic scenarios. This is mainly due to the avoidance of overfitting and underfitting that commonly plague the solutions based on sparse regression combined with model selection methods, including the corrected Akaike Information Criterion. This advantage is finally documented in selected fMRI task datasets." @default.
- W4281641471 created "2022-06-13" @default.
- W4281641471 creator A5040241807 @default.
- W4281641471 creator A5040682292 @default.
- W4281641471 creator A5055823811 @default.
- W4281641471 creator A5086481729 @default.
- W4281641471 date "2022-03-14" @default.
- W4281641471 modified "2023-09-29" @default.
- W4281641471 title "Mixture Components Inference for Sparse Regression: Introduction and Application for Estimation of Neuronal Signal from fMRI BOLD" @default.
- W4281641471 doi "https://doi.org/10.48550/arxiv.2203.07209" @default.
- W4281641471 hasPublicationYear "2022" @default.
- W4281641471 type Work @default.
- W4281641471 citedByCount "0" @default.
- W4281641471 crossrefType "posted-content" @default.
- W4281641471 hasAuthorship W4281641471A5040241807 @default.
- W4281641471 hasAuthorship W4281641471A5040682292 @default.
- W4281641471 hasAuthorship W4281641471A5055823811 @default.
- W4281641471 hasAuthorship W4281641471A5086481729 @default.
- W4281641471 hasBestOaLocation W42816414711 @default.
- W4281641471 hasConcept C105795698 @default.
- W4281641471 hasConcept C107673813 @default.
- W4281641471 hasConcept C119857082 @default.
- W4281641471 hasConcept C136764020 @default.
- W4281641471 hasConcept C153180895 @default.
- W4281641471 hasConcept C154945302 @default.
- W4281641471 hasConcept C169760540 @default.
- W4281641471 hasConcept C207201462 @default.
- W4281641471 hasConcept C22019652 @default.
- W4281641471 hasConcept C2776214188 @default.
- W4281641471 hasConcept C2779226451 @default.
- W4281641471 hasConcept C33923547 @default.
- W4281641471 hasConcept C37616216 @default.
- W4281641471 hasConcept C41008148 @default.
- W4281641471 hasConcept C50644808 @default.
- W4281641471 hasConcept C77637269 @default.
- W4281641471 hasConcept C83546350 @default.
- W4281641471 hasConcept C86803240 @default.
- W4281641471 hasConcept C95623464 @default.
- W4281641471 hasConceptScore W4281641471C105795698 @default.
- W4281641471 hasConceptScore W4281641471C107673813 @default.
- W4281641471 hasConceptScore W4281641471C119857082 @default.
- W4281641471 hasConceptScore W4281641471C136764020 @default.
- W4281641471 hasConceptScore W4281641471C153180895 @default.
- W4281641471 hasConceptScore W4281641471C154945302 @default.
- W4281641471 hasConceptScore W4281641471C169760540 @default.
- W4281641471 hasConceptScore W4281641471C207201462 @default.
- W4281641471 hasConceptScore W4281641471C22019652 @default.
- W4281641471 hasConceptScore W4281641471C2776214188 @default.
- W4281641471 hasConceptScore W4281641471C2779226451 @default.
- W4281641471 hasConceptScore W4281641471C33923547 @default.
- W4281641471 hasConceptScore W4281641471C37616216 @default.
- W4281641471 hasConceptScore W4281641471C41008148 @default.
- W4281641471 hasConceptScore W4281641471C50644808 @default.
- W4281641471 hasConceptScore W4281641471C77637269 @default.
- W4281641471 hasConceptScore W4281641471C83546350 @default.
- W4281641471 hasConceptScore W4281641471C86803240 @default.
- W4281641471 hasConceptScore W4281641471C95623464 @default.
- W4281641471 hasLocation W42816414711 @default.
- W4281641471 hasOpenAccess W4281641471 @default.
- W4281641471 hasPrimaryLocation W42816414711 @default.
- W4281641471 hasRelatedWork W2742991909 @default.
- W4281641471 hasRelatedWork W2795435272 @default.
- W4281641471 hasRelatedWork W2951851447 @default.
- W4281641471 hasRelatedWork W2989932438 @default.
- W4281641471 hasRelatedWork W2994814278 @default.
- W4281641471 hasRelatedWork W3099765033 @default.
- W4281641471 hasRelatedWork W3175189414 @default.
- W4281641471 hasRelatedWork W4281641471 @default.
- W4281641471 hasRelatedWork W4221154957 @default.
- W4281641471 hasRelatedWork W4226039389 @default.
- W4281641471 isParatext "false" @default.
- W4281641471 isRetracted "false" @default.
- W4281641471 workType "article" @default.