Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281651044> ?p ?o ?g. }
- W4281651044 endingPage "1319" @default.
- W4281651044 startingPage "1319" @default.
- W4281651044 abstract "Crop nitrogen is an efficient index for estimating crop yield. Using hyperspectral information to monitor nitrogen in cotton information in real time can help guide cotton cultivation. In this study, we used drip-irrigation cotton in Xinjiang as the research object and employed various nitrogen treatments to explore the correlation between hyperspectral vegetation indexes and leaf nitrogen concentration (LNC) and the canopy nitrogen density (CND) of cotton in different growth periods and interannual. We employed 30 published hyperspectral vegetation indexes obtained through spectral monitoring in 2019 and 2020 to screen for hyperspectral vegetation indexes highly correlated with the nitrogen in cotton indexes. Based on the same group of hyperspectral vegetation indexes, interannual and multi-temporal nitrogen estimation models of cotton were established using three modeling methods: simple multiple linear regression (MLR), partial least-squares regression (PLSR), and support vector regression (SVR). The results showed the following: (1) The correlations between LNC and CND and vegetation index in individual growth periods of cotton were lower than those for the entire growth period. The correlations between hyperspectral vegetation indexes and cotton LNC, CND, leaf area index (LAI), and aboveground biomass (AGB), were significantly different between years and varieties. The relatively stable indexes between vegetation and LNC were TCARI, PRI, CCRI, and SRI-2, and the absolute values of correlation were 0.251~0.387, 0.239~0.422, 0.245~0.387, and 0.357~0.533. In addition, the correlation between CIred-edge and REIlinear and group indicators (CND, AGB, and LAI) was more stable. (2) In the models established by MLR, PLSR, and SVR, the R2 value from the SVR method was higher in the estimation model based on the entire growth period data and LNC and CND. (3) Using the same group of selected hyperspectral vegetation indexes to estimate nitrogen in cotton in different growth stages, the accuracy of the estimation model of canopy nitrogen density (CND) was higher than that of the estimation model for leaf nitrogen concentration. The canopy nitrogen density most stable model was established by MLR at the flowering and boll stages and the full-boll stage with R2 = 0.532~0.665. This study explored the application potential of hyperspectral vegetation indexes to the nitrogen of drip-irrigated cotton, and the results provide a theoretical basis for hyperspectral monitoring for crop nutrients and canopy structure." @default.
- W4281651044 created "2022-06-13" @default.
- W4281651044 creator A5010231637 @default.
- W4281651044 creator A5014934585 @default.
- W4281651044 creator A5032118072 @default.
- W4281651044 creator A5038339911 @default.
- W4281651044 creator A5039837606 @default.
- W4281651044 creator A5040554407 @default.
- W4281651044 creator A5044496081 @default.
- W4281651044 creator A5075965575 @default.
- W4281651044 creator A5085632500 @default.
- W4281651044 creator A5091391476 @default.
- W4281651044 date "2022-05-30" @default.
- W4281651044 modified "2023-10-02" @default.
- W4281651044 title "Estimation of Nitrogen Content Based on the Hyperspectral Vegetation Indexes of Interannual and Multi-Temporal in Cotton" @default.
- W4281651044 cites W1483386591 @default.
- W4281651044 cites W1592190129 @default.
- W4281651044 cites W1966368958 @default.
- W4281651044 cites W1974788889 @default.
- W4281651044 cites W1983284664 @default.
- W4281651044 cites W1985555755 @default.
- W4281651044 cites W1991651418 @default.
- W4281651044 cites W2011475440 @default.
- W4281651044 cites W2012564082 @default.
- W4281651044 cites W2012686349 @default.
- W4281651044 cites W2019967662 @default.
- W4281651044 cites W2025787493 @default.
- W4281651044 cites W2030078894 @default.
- W4281651044 cites W2030233869 @default.
- W4281651044 cites W2034650341 @default.
- W4281651044 cites W2036003376 @default.
- W4281651044 cites W2046404820 @default.
- W4281651044 cites W2052173685 @default.
- W4281651044 cites W2070559755 @default.
- W4281651044 cites W2089464686 @default.
- W4281651044 cites W2099704405 @default.
- W4281651044 cites W2109006150 @default.
- W4281651044 cites W2111947859 @default.
- W4281651044 cites W2117333625 @default.
- W4281651044 cites W2125257725 @default.
- W4281651044 cites W2129483042 @default.
- W4281651044 cites W2150202143 @default.
- W4281651044 cites W2163410149 @default.
- W4281651044 cites W2248139498 @default.
- W4281651044 cites W226670603 @default.
- W4281651044 cites W2902238357 @default.
- W4281651044 cites W2937578908 @default.
- W4281651044 cites W2946139905 @default.
- W4281651044 cites W2997113988 @default.
- W4281651044 cites W3087362407 @default.
- W4281651044 cites W3097823266 @default.
- W4281651044 cites W3114168756 @default.
- W4281651044 cites W3121828030 @default.
- W4281651044 cites W3129445875 @default.
- W4281651044 cites W3140819613 @default.
- W4281651044 cites W3213201148 @default.
- W4281651044 cites W4236621906 @default.
- W4281651044 doi "https://doi.org/10.3390/agronomy12061319" @default.
- W4281651044 hasPublicationYear "2022" @default.
- W4281651044 type Work @default.
- W4281651044 citedByCount "8" @default.
- W4281651044 countsByYear W42816510442022 @default.
- W4281651044 countsByYear W42816510442023 @default.
- W4281651044 crossrefType "journal-article" @default.
- W4281651044 hasAuthorship W4281651044A5010231637 @default.
- W4281651044 hasAuthorship W4281651044A5014934585 @default.
- W4281651044 hasAuthorship W4281651044A5032118072 @default.
- W4281651044 hasAuthorship W4281651044A5038339911 @default.
- W4281651044 hasAuthorship W4281651044A5039837606 @default.
- W4281651044 hasAuthorship W4281651044A5040554407 @default.
- W4281651044 hasAuthorship W4281651044A5044496081 @default.
- W4281651044 hasAuthorship W4281651044A5075965575 @default.
- W4281651044 hasAuthorship W4281651044A5085632500 @default.
- W4281651044 hasAuthorship W4281651044A5091391476 @default.
- W4281651044 hasBestOaLocation W42816510441 @default.
- W4281651044 hasConcept C101000010 @default.
- W4281651044 hasConcept C105795698 @default.
- W4281651044 hasConcept C115540264 @default.
- W4281651044 hasConcept C137580998 @default.
- W4281651044 hasConcept C142724271 @default.
- W4281651044 hasConcept C1549246 @default.
- W4281651044 hasConcept C159078339 @default.
- W4281651044 hasConcept C178790620 @default.
- W4281651044 hasConcept C185592680 @default.
- W4281651044 hasConcept C205649164 @default.
- W4281651044 hasConcept C22354355 @default.
- W4281651044 hasConcept C25989453 @default.
- W4281651044 hasConcept C2776133958 @default.
- W4281651044 hasConcept C2780376076 @default.
- W4281651044 hasConcept C33923547 @default.
- W4281651044 hasConcept C39432304 @default.
- W4281651044 hasConcept C48921125 @default.
- W4281651044 hasConcept C537208039 @default.
- W4281651044 hasConcept C59822182 @default.
- W4281651044 hasConcept C62649853 @default.
- W4281651044 hasConcept C6557445 @default.
- W4281651044 hasConcept C71924100 @default.
- W4281651044 hasConcept C78869512 @default.