Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281661704> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4281661704 endingPage "134" @default.
- W4281661704 startingPage "114" @default.
- W4281661704 abstract "Accurate prediction of pig growth is an important tool for supporting sustainable global pork production, due to the potential benefits to farm management in monitoring growth according to target, promoting efficient use of resources and planning sale of finished animals. In this paper, a long short-term memory (LSTM) recurrent neural network architecture was designed to predict how long it would take for grower-finisher pigs housed in a climate-controlled building reflecting commercial practice to reach a target liveweight of 90 kg. To make these predictions, data on pig liveweight and food consumption were integrated, along with various combinations of environmental temperature recorded by the building control system and, to represent seasonality, encodings of day of the year. Also, ensembles were created and evaluated by averaging the predictions of multiple models, each trained with different combinations of input features, and comparisons were made between the performance of the LSTM models and other machine learning algorithms. Overall, the LSTM model achieved the best prediction performance, with a RMSE of 2.470 days and a Pearson's correlation coefficient of 0.962. Integrating both environmental temperature and seasonality data into the models generally resulted in an improvement in predictive performance. The results demonstrate the potential of LSTM models as a precision livestock farming tool for the early prediction of growth in commercial finisher pigs." @default.
- W4281661704 created "2022-06-13" @default.
- W4281661704 creator A5012372361 @default.
- W4281661704 creator A5038166911 @default.
- W4281661704 creator A5091509794 @default.
- W4281661704 date "2022-08-01" @default.
- W4281661704 modified "2023-09-30" @default.
- W4281661704 title "Prediction of growth in grower-finisher pigs using recurrent neural networks" @default.
- W4281661704 cites W1514832894 @default.
- W4281661704 cites W1564732769 @default.
- W4281661704 cites W1596195946 @default.
- W4281661704 cites W1978331315 @default.
- W4281661704 cites W1988790447 @default.
- W4281661704 cites W2005439273 @default.
- W4281661704 cites W2015165061 @default.
- W4281661704 cites W2015312420 @default.
- W4281661704 cites W2025172297 @default.
- W4281661704 cites W2035922076 @default.
- W4281661704 cites W2048582157 @default.
- W4281661704 cites W2064675550 @default.
- W4281661704 cites W2088798586 @default.
- W4281661704 cites W2101608954 @default.
- W4281661704 cites W2114049530 @default.
- W4281661704 cites W2122293314 @default.
- W4281661704 cites W2167258847 @default.
- W4281661704 cites W2243283548 @default.
- W4281661704 cites W2584559157 @default.
- W4281661704 cites W2791690647 @default.
- W4281661704 cites W2792559640 @default.
- W4281661704 cites W2883917923 @default.
- W4281661704 cites W2911964244 @default.
- W4281661704 cites W2922182161 @default.
- W4281661704 cites W2953774026 @default.
- W4281661704 cites W2964668276 @default.
- W4281661704 cites W3047581272 @default.
- W4281661704 cites W3089952167 @default.
- W4281661704 cites W3141299692 @default.
- W4281661704 cites W3176709600 @default.
- W4281661704 cites W4200033856 @default.
- W4281661704 cites W4236137412 @default.
- W4281661704 cites W48253255 @default.
- W4281661704 doi "https://doi.org/10.1016/j.biosystemseng.2022.05.016" @default.
- W4281661704 hasPublicationYear "2022" @default.
- W4281661704 type Work @default.
- W4281661704 citedByCount "3" @default.
- W4281661704 countsByYear W42816617042023 @default.
- W4281661704 crossrefType "journal-article" @default.
- W4281661704 hasAuthorship W4281661704A5012372361 @default.
- W4281661704 hasAuthorship W4281661704A5038166911 @default.
- W4281661704 hasAuthorship W4281661704A5091509794 @default.
- W4281661704 hasBestOaLocation W42816617041 @default.
- W4281661704 hasConcept C105795698 @default.
- W4281661704 hasConcept C112964050 @default.
- W4281661704 hasConcept C119857082 @default.
- W4281661704 hasConcept C125403950 @default.
- W4281661704 hasConcept C147168706 @default.
- W4281661704 hasConcept C154945302 @default.
- W4281661704 hasConcept C18903297 @default.
- W4281661704 hasConcept C33923547 @default.
- W4281661704 hasConcept C41008148 @default.
- W4281661704 hasConcept C50644808 @default.
- W4281661704 hasConcept C86803240 @default.
- W4281661704 hasConceptScore W4281661704C105795698 @default.
- W4281661704 hasConceptScore W4281661704C112964050 @default.
- W4281661704 hasConceptScore W4281661704C119857082 @default.
- W4281661704 hasConceptScore W4281661704C125403950 @default.
- W4281661704 hasConceptScore W4281661704C147168706 @default.
- W4281661704 hasConceptScore W4281661704C154945302 @default.
- W4281661704 hasConceptScore W4281661704C18903297 @default.
- W4281661704 hasConceptScore W4281661704C33923547 @default.
- W4281661704 hasConceptScore W4281661704C41008148 @default.
- W4281661704 hasConceptScore W4281661704C50644808 @default.
- W4281661704 hasConceptScore W4281661704C86803240 @default.
- W4281661704 hasLocation W42816617041 @default.
- W4281661704 hasOpenAccess W4281661704 @default.
- W4281661704 hasPrimaryLocation W42816617041 @default.
- W4281661704 hasRelatedWork W2902723393 @default.
- W4281661704 hasRelatedWork W2961085424 @default.
- W4281661704 hasRelatedWork W3046775127 @default.
- W4281661704 hasRelatedWork W4281386417 @default.
- W4281661704 hasRelatedWork W4285260836 @default.
- W4281661704 hasRelatedWork W4286629047 @default.
- W4281661704 hasRelatedWork W4306321456 @default.
- W4281661704 hasRelatedWork W4306674287 @default.
- W4281661704 hasRelatedWork W4327831767 @default.
- W4281661704 hasRelatedWork W4224009465 @default.
- W4281661704 hasVolume "220" @default.
- W4281661704 isParatext "false" @default.
- W4281661704 isRetracted "false" @default.
- W4281661704 workType "article" @default.