Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281663706> ?p ?o ?g. }
- W4281663706 abstract "Early regression-the regression in tumor volume during the initial phase of radiotherapy (approximately 2 weeks after treatment initiation)-is a common occurrence during radiotherapy. This rapid radiation-induced tumor regression may alter target coordinates, necessitating adaptive radiotherapy (ART). We developed a deep learning-based radiomics (DLR) approach to predict early head and neck tumor regression and thereby facilitate ART. Primary gross tumor volume (GTVp) was monitored in 96 patients and nodal GTV (GTVn) in 79 patients during treatment. All patients underwent two computed tomography (CT) scans: one before the start of radiotherapy for initial planning and one during radiotherapy for boost planning. Patients were assigned to regression and nonregression groups according to their median tumor regression rate (ΔGTV/treatment day from initial to boost CT scan). We input a GTV image into the convolutional neural network model, which was pretrained using natural image datasets, via transfer learning. The deep features were extracted from the last fully connected layer. To clarify the prognostic power of the deep features, machine learning models were trained. The models then predicted the regression and nonregression of GTVp and GTVn and evaluated the predictive performance by 0.632 + bootstrap area under the curve (AUC). Predictive performance for GTVp regression was highest using the InceptionResNetv2 model (mean AUC = 0.75) and that for GTVn was highest using NASNetLarge (mean AUC = 0.73). Both models outperformed the handcrafted radiomics features (mean AUC = 0.63 for GTVp and 0.61 for GTVn) or clinical factors (0.64 and 0.67, respectively). DLR may facilitate ART for improved radiation side-effects and target coverage." @default.
- W4281663706 created "2022-06-13" @default.
- W4281663706 creator A5004640817 @default.
- W4281663706 creator A5030060347 @default.
- W4281663706 creator A5040101605 @default.
- W4281663706 creator A5046123328 @default.
- W4281663706 creator A5050560173 @default.
- W4281663706 creator A5053813732 @default.
- W4281663706 creator A5055554576 @default.
- W4281663706 creator A5071741462 @default.
- W4281663706 creator A5091643028 @default.
- W4281663706 date "2022-05-27" @default.
- W4281663706 modified "2023-10-16" @default.
- W4281663706 title "A deep learning-based radiomics approach to predict head and neck tumor regression for adaptive radiotherapy" @default.
- W4281663706 cites W1995788949 @default.
- W4281663706 cites W2044110153 @default.
- W4281663706 cites W2052507258 @default.
- W4281663706 cites W2083927153 @default.
- W4281663706 cites W2089918690 @default.
- W4281663706 cites W2104633732 @default.
- W4281663706 cites W2117539524 @default.
- W4281663706 cites W2124884989 @default.
- W4281663706 cites W2142504798 @default.
- W4281663706 cites W2292862470 @default.
- W4281663706 cites W2398056625 @default.
- W4281663706 cites W2463475237 @default.
- W4281663706 cites W2471913217 @default.
- W4281663706 cites W2579949149 @default.
- W4281663706 cites W2747930650 @default.
- W4281663706 cites W2751538714 @default.
- W4281663706 cites W2753319029 @default.
- W4281663706 cites W2760242838 @default.
- W4281663706 cites W2766872246 @default.
- W4281663706 cites W2767128594 @default.
- W4281663706 cites W2790973804 @default.
- W4281663706 cites W2799390666 @default.
- W4281663706 cites W2806252395 @default.
- W4281663706 cites W2885478230 @default.
- W4281663706 cites W2887229430 @default.
- W4281663706 cites W2899847761 @default.
- W4281663706 cites W2906407017 @default.
- W4281663706 cites W2915885988 @default.
- W4281663706 cites W2943751885 @default.
- W4281663706 cites W2963308874 @default.
- W4281663706 cites W2966460997 @default.
- W4281663706 cites W2972165905 @default.
- W4281663706 cites W2981001892 @default.
- W4281663706 cites W2992369104 @default.
- W4281663706 cites W2998471640 @default.
- W4281663706 cites W2998840182 @default.
- W4281663706 cites W2998851574 @default.
- W4281663706 cites W3008565314 @default.
- W4281663706 cites W3020016599 @default.
- W4281663706 cites W3100610036 @default.
- W4281663706 cites W3121545811 @default.
- W4281663706 cites W3148916541 @default.
- W4281663706 cites W3158340897 @default.
- W4281663706 cites W3167725018 @default.
- W4281663706 doi "https://doi.org/10.1038/s41598-022-12170-z" @default.
- W4281663706 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35624113" @default.
- W4281663706 hasPublicationYear "2022" @default.
- W4281663706 type Work @default.
- W4281663706 citedByCount "9" @default.
- W4281663706 countsByYear W42816637062022 @default.
- W4281663706 countsByYear W42816637062023 @default.
- W4281663706 crossrefType "journal-article" @default.
- W4281663706 hasAuthorship W4281663706A5004640817 @default.
- W4281663706 hasAuthorship W4281663706A5030060347 @default.
- W4281663706 hasAuthorship W4281663706A5040101605 @default.
- W4281663706 hasAuthorship W4281663706A5046123328 @default.
- W4281663706 hasAuthorship W4281663706A5050560173 @default.
- W4281663706 hasAuthorship W4281663706A5053813732 @default.
- W4281663706 hasAuthorship W4281663706A5055554576 @default.
- W4281663706 hasAuthorship W4281663706A5071741462 @default.
- W4281663706 hasAuthorship W4281663706A5091643028 @default.
- W4281663706 hasBestOaLocation W42816637061 @default.
- W4281663706 hasConcept C105795698 @default.
- W4281663706 hasConcept C108583219 @default.
- W4281663706 hasConcept C126838900 @default.
- W4281663706 hasConcept C154945302 @default.
- W4281663706 hasConcept C201645570 @default.
- W4281663706 hasConcept C2778559731 @default.
- W4281663706 hasConcept C2989005 @default.
- W4281663706 hasConcept C33923547 @default.
- W4281663706 hasConcept C41008148 @default.
- W4281663706 hasConcept C509974204 @default.
- W4281663706 hasConcept C71924100 @default.
- W4281663706 hasConcept C81363708 @default.
- W4281663706 hasConcept C83546350 @default.
- W4281663706 hasConceptScore W4281663706C105795698 @default.
- W4281663706 hasConceptScore W4281663706C108583219 @default.
- W4281663706 hasConceptScore W4281663706C126838900 @default.
- W4281663706 hasConceptScore W4281663706C154945302 @default.
- W4281663706 hasConceptScore W4281663706C201645570 @default.
- W4281663706 hasConceptScore W4281663706C2778559731 @default.
- W4281663706 hasConceptScore W4281663706C2989005 @default.
- W4281663706 hasConceptScore W4281663706C33923547 @default.
- W4281663706 hasConceptScore W4281663706C41008148 @default.
- W4281663706 hasConceptScore W4281663706C509974204 @default.
- W4281663706 hasConceptScore W4281663706C71924100 @default.