Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281663768> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4281663768 endingPage "387" @default.
- W4281663768 startingPage "369" @default.
- W4281663768 abstract "Background and Aim Aging people can suffer from cognitive impairments with a range of symptoms, including memory, perception, and difficulty in solving problems called Alzheimer’s disease (AD). The early detection of Mild Cognitive Impairment (MCI), which can develop AD, plays a major role in the management of patients to slow the decline in cognitive function, as treatments are effective at an early stage of the disease course. For this purpose, advanced computer technologies can provide a tool for the early detection of AD and prediction of disease progression. This article presents a serious game, including 16 mini-games that aimed at detecting AD or MCI in the mild stage. Based on gamification techniques and machine learning (ML), by overcoming the limitations of traditional tests. This gamified cognitive tool, entitled AlzCoGame, evaluates the main cognitive domains considered to be the most pertinent indicators in diagnosing cognitive impairments: working memory, episodic memory, executive functions, Visio-spatial orientation, concentration, and attention. Results and Conclusion Six predictive ML models have been implemented using the AlzCoGame dataset. We used the K-fold cross-validation and classification metrics to validate the model's performance. Based on the results of the pilot study, the best overall performance was obtained by the RF classifier with average Sensitivity = 0.89, Specificity = 0.93, Accuracy = 0.92, F1-Score = 0.91, and ROC = 0.91. We can deduce that including machine learning techniques and serious games could help improve certain aspects of the clinical diagnosis of cognitive impairment. Moreover, clinical trials are required to prove the impact of this gamified program on cognitive skills and evaluate usability measures." @default.
- W4281663768 created "2022-06-13" @default.
- W4281663768 creator A5022151282 @default.
- W4281663768 creator A5083609680 @default.
- W4281663768 date "2022-06-06" @default.
- W4281663768 modified "2023-09-27" @default.
- W4281663768 title "Machine learning and Serious Game for the Early Diagnosis of Alzheimer’s Disease" @default.
- W4281663768 cites W109494006 @default.
- W4281663768 cites W1968621287 @default.
- W4281663768 cites W2023718959 @default.
- W4281663768 cites W2029426756 @default.
- W4281663768 cites W2056132907 @default.
- W4281663768 cites W2058501113 @default.
- W4281663768 cites W2065041047 @default.
- W4281663768 cites W2083998442 @default.
- W4281663768 cites W2085423471 @default.
- W4281663768 cites W2111301169 @default.
- W4281663768 cites W2197453587 @default.
- W4281663768 cites W2276258890 @default.
- W4281663768 cites W2296223440 @default.
- W4281663768 cites W2343288060 @default.
- W4281663768 cites W2529258727 @default.
- W4281663768 cites W2559115176 @default.
- W4281663768 cites W2560202947 @default.
- W4281663768 cites W2574649403 @default.
- W4281663768 cites W2737231922 @default.
- W4281663768 cites W2883860074 @default.
- W4281663768 cites W2991751580 @default.
- W4281663768 cites W3015066510 @default.
- W4281663768 cites W3092262466 @default.
- W4281663768 doi "https://doi.org/10.1177/10468781221106850" @default.
- W4281663768 hasPublicationYear "2022" @default.
- W4281663768 type Work @default.
- W4281663768 citedByCount "1" @default.
- W4281663768 countsByYear W42816637682023 @default.
- W4281663768 crossrefType "journal-article" @default.
- W4281663768 hasAuthorship W4281663768A5022151282 @default.
- W4281663768 hasAuthorship W4281663768A5083609680 @default.
- W4281663768 hasConcept C118552586 @default.
- W4281663768 hasConcept C119857082 @default.
- W4281663768 hasConcept C142724271 @default.
- W4281663768 hasConcept C154945302 @default.
- W4281663768 hasConcept C15744967 @default.
- W4281663768 hasConcept C169760540 @default.
- W4281663768 hasConcept C169900460 @default.
- W4281663768 hasConcept C180747234 @default.
- W4281663768 hasConcept C26760741 @default.
- W4281663768 hasConcept C2779134260 @default.
- W4281663768 hasConcept C2984915365 @default.
- W4281663768 hasConcept C41008148 @default.
- W4281663768 hasConcept C71924100 @default.
- W4281663768 hasConceptScore W4281663768C118552586 @default.
- W4281663768 hasConceptScore W4281663768C119857082 @default.
- W4281663768 hasConceptScore W4281663768C142724271 @default.
- W4281663768 hasConceptScore W4281663768C154945302 @default.
- W4281663768 hasConceptScore W4281663768C15744967 @default.
- W4281663768 hasConceptScore W4281663768C169760540 @default.
- W4281663768 hasConceptScore W4281663768C169900460 @default.
- W4281663768 hasConceptScore W4281663768C180747234 @default.
- W4281663768 hasConceptScore W4281663768C26760741 @default.
- W4281663768 hasConceptScore W4281663768C2779134260 @default.
- W4281663768 hasConceptScore W4281663768C2984915365 @default.
- W4281663768 hasConceptScore W4281663768C41008148 @default.
- W4281663768 hasConceptScore W4281663768C71924100 @default.
- W4281663768 hasIssue "4" @default.
- W4281663768 hasLocation W42816637681 @default.
- W4281663768 hasOpenAccess W4281663768 @default.
- W4281663768 hasPrimaryLocation W42816637681 @default.
- W4281663768 hasRelatedWork W1968392491 @default.
- W4281663768 hasRelatedWork W1994127467 @default.
- W4281663768 hasRelatedWork W1994638219 @default.
- W4281663768 hasRelatedWork W2030766398 @default.
- W4281663768 hasRelatedWork W2046659574 @default.
- W4281663768 hasRelatedWork W2079468847 @default.
- W4281663768 hasRelatedWork W2120001394 @default.
- W4281663768 hasRelatedWork W2139977042 @default.
- W4281663768 hasRelatedWork W2324626245 @default.
- W4281663768 hasRelatedWork W2325903967 @default.
- W4281663768 hasVolume "53" @default.
- W4281663768 isParatext "false" @default.
- W4281663768 isRetracted "false" @default.
- W4281663768 workType "article" @default.