Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281670475> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4281670475 endingPage "1915" @default.
- W4281670475 startingPage "1904" @default.
- W4281670475 abstract "Multiple imputation techniques are commonly used when data are missing, however, there are many options one can consider. Multivariate imputation by chained equations is a popular method for generating imputations but relies on specifying models when imputing missing values. In this work, we introduce multiple imputation by super learning, an update to the multivariate imputation by chained equations method to generate imputations with ensemble learning. Ensemble methodologies have recently gained attention for use in inference and prediction as they optimally combine a variety of user-specified parametric and non-parametric models and perform well when estimating complex functions, including those with interaction terms. Through two simulations we compare inferences made using the multiple imputation by super learning approach to those made with other commonly used multiple imputation methods and demonstrate multiple imputation by super learning as a superior option when considering characteristics such as bias, confidence interval coverage rate, and confidence interval width." @default.
- W4281670475 created "2022-06-13" @default.
- W4281670475 creator A5024768935 @default.
- W4281670475 creator A5058596390 @default.
- W4281670475 date "2022-06-05" @default.
- W4281670475 modified "2023-09-27" @default.
- W4281670475 title "MISL: Multiple imputation by super learning" @default.
- W4281670475 cites W1516659296 @default.
- W4281670475 cites W1919216911 @default.
- W4281670475 cites W1989203151 @default.
- W4281670475 cites W2001388444 @default.
- W4281670475 cites W2011054301 @default.
- W4281670475 cites W2032578483 @default.
- W4281670475 cites W2058854776 @default.
- W4281670475 cites W2090656275 @default.
- W4281670475 cites W2094096650 @default.
- W4281670475 cites W2095552629 @default.
- W4281670475 cites W2097959846 @default.
- W4281670475 cites W2100358124 @default.
- W4281670475 cites W2102252264 @default.
- W4281670475 cites W2112621266 @default.
- W4281670475 cites W2114346379 @default.
- W4281670475 cites W2115098571 @default.
- W4281670475 cites W2115176304 @default.
- W4281670475 cites W2118502261 @default.
- W4281670475 cites W2169076391 @default.
- W4281670475 cites W2480680997 @default.
- W4281670475 cites W2487770199 @default.
- W4281670475 cites W2606442136 @default.
- W4281670475 cites W2607507174 @default.
- W4281670475 cites W2757933965 @default.
- W4281670475 cites W2800968938 @default.
- W4281670475 cites W2891381594 @default.
- W4281670475 cites W2911964244 @default.
- W4281670475 cites W2953086467 @default.
- W4281670475 cites W3015536380 @default.
- W4281670475 cites W3176953455 @default.
- W4281670475 cites W3214476217 @default.
- W4281670475 cites W4233056867 @default.
- W4281670475 cites W4240499199 @default.
- W4281670475 doi "https://doi.org/10.1177/09622802221104238" @default.
- W4281670475 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35658622" @default.
- W4281670475 hasPublicationYear "2022" @default.
- W4281670475 type Work @default.
- W4281670475 citedByCount "2" @default.
- W4281670475 countsByYear W42816704752022 @default.
- W4281670475 crossrefType "journal-article" @default.
- W4281670475 hasAuthorship W4281670475A5024768935 @default.
- W4281670475 hasAuthorship W4281670475A5058596390 @default.
- W4281670475 hasBestOaLocation W42816704752 @default.
- W4281670475 hasConcept C105795698 @default.
- W4281670475 hasConcept C117251300 @default.
- W4281670475 hasConcept C119857082 @default.
- W4281670475 hasConcept C124101348 @default.
- W4281670475 hasConcept C154945302 @default.
- W4281670475 hasConcept C161584116 @default.
- W4281670475 hasConcept C2776214188 @default.
- W4281670475 hasConcept C33923547 @default.
- W4281670475 hasConcept C41008148 @default.
- W4281670475 hasConcept C45942800 @default.
- W4281670475 hasConcept C58041806 @default.
- W4281670475 hasConcept C9357733 @default.
- W4281670475 hasConceptScore W4281670475C105795698 @default.
- W4281670475 hasConceptScore W4281670475C117251300 @default.
- W4281670475 hasConceptScore W4281670475C119857082 @default.
- W4281670475 hasConceptScore W4281670475C124101348 @default.
- W4281670475 hasConceptScore W4281670475C154945302 @default.
- W4281670475 hasConceptScore W4281670475C161584116 @default.
- W4281670475 hasConceptScore W4281670475C2776214188 @default.
- W4281670475 hasConceptScore W4281670475C33923547 @default.
- W4281670475 hasConceptScore W4281670475C41008148 @default.
- W4281670475 hasConceptScore W4281670475C45942800 @default.
- W4281670475 hasConceptScore W4281670475C58041806 @default.
- W4281670475 hasConceptScore W4281670475C9357733 @default.
- W4281670475 hasFunder F4320337361 @default.
- W4281670475 hasIssue "10" @default.
- W4281670475 hasLocation W42816704751 @default.
- W4281670475 hasLocation W42816704752 @default.
- W4281670475 hasLocation W42816704753 @default.
- W4281670475 hasOpenAccess W4281670475 @default.
- W4281670475 hasPrimaryLocation W42816704751 @default.
- W4281670475 hasRelatedWork W2052457798 @default.
- W4281670475 hasRelatedWork W2120643732 @default.
- W4281670475 hasRelatedWork W2215424941 @default.
- W4281670475 hasRelatedWork W2551217493 @default.
- W4281670475 hasRelatedWork W3004657493 @default.
- W4281670475 hasRelatedWork W3049453136 @default.
- W4281670475 hasRelatedWork W3166705045 @default.
- W4281670475 hasRelatedWork W4226239514 @default.
- W4281670475 hasRelatedWork W4294843249 @default.
- W4281670475 hasRelatedWork W1926376776 @default.
- W4281670475 hasVolume "31" @default.
- W4281670475 isParatext "false" @default.
- W4281670475 isRetracted "false" @default.
- W4281670475 workType "article" @default.