Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281671659> ?p ?o ?g. }
- W4281671659 endingPage "107077" @default.
- W4281671659 startingPage "107077" @default.
- W4281671659 abstract "The continuous demand placed on farmland to yield optimal harvest is dependent on the continuous application of agrochemicals and fertilizers to increase soil fertility and manage diseases. Successive application of fertilizers and use of agrochemicals coupled with metal and steel industries introduce potentially toxic elements into the soil. Active agricultural activities and industrial emissions that result in atmospheric cadmium (Cd) injection and active deposition on agricultural soil (particularly from the primary metal industry, steel and iron industrial production). The concentration of cadmium in the study area exceeds the local background value. As a result, excessive cadmium soil concentration will contribute to increased toxic and carcinogenic effects, with negative implications for both environmental and human health. Therefore, determining the spatial distribution of Cd is critical for environmentally friendly agricultural production and reducing Cd emission into soils. The goals of this study are to (i) determine the variability of Cd prediction in agricultural soil using spectral indices or terrain attributes coupled with modeling algorithms, and (ii) determine whether combining spectral indices and terrain attributes coupled with modeling algorithms can improve Cd prediction efficiency in agricultural soil. The study applied three modelling scenarios, comprised prediction using terrain attributes coupled with digital soil mapping (DSM) approaches (Scenario 1), prediction using spectral indices combined with DSMs (Scenario 2), and prediction using a combination of terrain attributes, spectral indices, and DSMs (Scenario 3). Gaussian process regression (GPR), partial least square regression (PLSR), extreme gradient boosting (EGB), multivariate adaptive regression splines (MARS), Bayesian regularized neural network (BRNN), regularized random forest (RRF), Bayesian generalized linear model (BGLM), and M5 tree models were the DSMs used in the study. The M5 tree model and terrain attributes {Scenario 1 R2 = 0.77, concordance correlation coefficient (CCC) = 0.73, root mean square error (RMSE) = 0.45, mean absolute error (MAE) = 0.37 and median absolute error (MdAE) = 0.35}, EGB and spectral indices {Scenario 2, R2 = 0.83, CCC = 0.76, RMSE = 0.54, MAE = 0.33 and MdAE = 0.23} and the M5 tree model, spectral indices and terrain attributes {Scenario 3, R2 = 0.84, CCC = 0.81, RMSE = 0.39, MAE = 0.31 and MdAE = 0.24} were the overall best combinations that predicted Cd in the agricultural soil. The overall evaluation of the approaches suggested that the combination of spectral indices, terrain attributes, and the M5 tree model in Scenario 3 was the optimal technique for predicting Cd in agricultural soil. Thus, a combination of environmental covariates with a high correlation with the response variable, combined with appropriate modeling techniques predicting potentially toxic elements in agricultural soil, will produce the best results." @default.
- W4281671659 created "2022-06-13" @default.
- W4281671659 creator A5019793888 @default.
- W4281671659 creator A5032061318 @default.
- W4281671659 creator A5048563984 @default.
- W4281671659 creator A5061080419 @default.
- W4281671659 creator A5073982129 @default.
- W4281671659 creator A5091682536 @default.
- W4281671659 date "2022-07-01" @default.
- W4281671659 modified "2023-10-16" @default.
- W4281671659 title "Using spectral indices and terrain attribute datasets and their combination in the prediction of cadmium content in agricultural soil" @default.
- W4281671659 cites W1058055990 @default.
- W4281671659 cites W1910959914 @default.
- W4281671659 cites W1985931804 @default.
- W4281671659 cites W2013874115 @default.
- W4281671659 cites W2016487358 @default.
- W4281671659 cites W2025857348 @default.
- W4281671659 cites W2030233869 @default.
- W4281671659 cites W2032305183 @default.
- W4281671659 cites W2033721274 @default.
- W4281671659 cites W2035958105 @default.
- W4281671659 cites W2054325787 @default.
- W4281671659 cites W2070638918 @default.
- W4281671659 cites W2078203609 @default.
- W4281671659 cites W2087457879 @default.
- W4281671659 cites W2087550825 @default.
- W4281671659 cites W2142405095 @default.
- W4281671659 cites W2142749220 @default.
- W4281671659 cites W2154013934 @default.
- W4281671659 cites W2256438753 @default.
- W4281671659 cites W2290130166 @default.
- W4281671659 cites W2320628436 @default.
- W4281671659 cites W2336157727 @default.
- W4281671659 cites W2477413195 @default.
- W4281671659 cites W2557037927 @default.
- W4281671659 cites W2598505938 @default.
- W4281671659 cites W2742094048 @default.
- W4281671659 cites W2780625821 @default.
- W4281671659 cites W2782072844 @default.
- W4281671659 cites W2791276982 @default.
- W4281671659 cites W2884077577 @default.
- W4281671659 cites W2897600557 @default.
- W4281671659 cites W2900125888 @default.
- W4281671659 cites W2901147812 @default.
- W4281671659 cites W2921317952 @default.
- W4281671659 cites W2923668995 @default.
- W4281671659 cites W2929575844 @default.
- W4281671659 cites W2954008857 @default.
- W4281671659 cites W2954482899 @default.
- W4281671659 cites W2958372549 @default.
- W4281671659 cites W2959824742 @default.
- W4281671659 cites W2964232029 @default.
- W4281671659 cites W2968864051 @default.
- W4281671659 cites W2970807030 @default.
- W4281671659 cites W2977218533 @default.
- W4281671659 cites W2979752067 @default.
- W4281671659 cites W2990155470 @default.
- W4281671659 cites W2998503064 @default.
- W4281671659 cites W3004914002 @default.
- W4281671659 cites W3007001750 @default.
- W4281671659 cites W3015083507 @default.
- W4281671659 cites W3025231349 @default.
- W4281671659 cites W3033945624 @default.
- W4281671659 cites W3035869533 @default.
- W4281671659 cites W3036312922 @default.
- W4281671659 cites W3042432682 @default.
- W4281671659 cites W3042493983 @default.
- W4281671659 cites W3044383849 @default.
- W4281671659 cites W3048871475 @default.
- W4281671659 cites W3081223604 @default.
- W4281671659 cites W3083135905 @default.
- W4281671659 cites W3092669929 @default.
- W4281671659 cites W3092974997 @default.
- W4281671659 cites W3093823829 @default.
- W4281671659 cites W3094186098 @default.
- W4281671659 cites W3098832331 @default.
- W4281671659 cites W3102656105 @default.
- W4281671659 cites W3110809027 @default.
- W4281671659 cites W3118678149 @default.
- W4281671659 cites W3119102677 @default.
- W4281671659 cites W3131404314 @default.
- W4281671659 cites W3137769438 @default.
- W4281671659 cites W3174178212 @default.
- W4281671659 cites W3175467669 @default.
- W4281671659 cites W4200114199 @default.
- W4281671659 cites W4200409979 @default.
- W4281671659 cites W4206046985 @default.
- W4281671659 cites W4206832070 @default.
- W4281671659 cites W92141931 @default.
- W4281671659 cites W2775615075 @default.
- W4281671659 doi "https://doi.org/10.1016/j.compag.2022.107077" @default.
- W4281671659 hasPublicationYear "2022" @default.
- W4281671659 type Work @default.
- W4281671659 citedByCount "5" @default.
- W4281671659 countsByYear W42816716592022 @default.
- W4281671659 countsByYear W42816716592023 @default.
- W4281671659 crossrefType "journal-article" @default.
- W4281671659 hasAuthorship W4281671659A5019793888 @default.