Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281674429> ?p ?o ?g. }
- W4281674429 endingPage "1800" @default.
- W4281674429 startingPage "1782" @default.
- W4281674429 abstract "Turbulence in the interstellar medium (ISM) is crucial in the process of star formation. Shocks produced by supernova explosions, jets, radiation from massive stars, or galactic spiral-arm dynamics are amongst the most common drivers of turbulence in the ISM. However, it is not fully understood how shocks drive turbulence, in particular whether shock driving is a more solenoidal(rotational, divergence-free) or a more compressive (potential, curl-free) mode of driving turbulence. The mode of turbulence driving has profound consequences for star formation, with compressive driving producing three times larger density dispersion, and an order of magnitude higher star formation rate than solenoidal driving. Here, we use hydrodynamical simulations of a shock inducing turbulent motions in a structured, multi-phase medium. This is done in the context of a laser-induced shock, propagating into a foam material, in preparation for an experiment to be performed at the National Ignition Facility (NIF). Specifically, we analyse the density and velocity distributions in the shocked turbulent medium, and measure the turbulence driving parameter $b=(sigma^{2 Gamma}_{rho /langle rho rangle}-1)^{1/2} (1-sigma_{rho langle rho rangle}^{-2})^{-1/2}mathcal{M}^{-1}Gamma^{-1/2}$ with the density dispersion $sigma_{rho / langle rho rangle}$, the turbulent Mach number $mathcal{M}$, and the polytropic exponent $Gamma$. Purely solenoidal and purely compressive driving correspond to $b sim 1/3$ and $b sim 1$, respectively. Using simulations in which a shock is driven into a multi-phase medium with structures of different sizes and $Gamma < 1$, we find $b sim 1$ for all cases, showing that shock-driven turbulence is consistent with strongly compressive driving." @default.
- W4281674429 created "2022-06-13" @default.
- W4281674429 creator A5016250498 @default.
- W4281674429 creator A5050180848 @default.
- W4281674429 creator A5050296559 @default.
- W4281674429 creator A5051700515 @default.
- W4281674429 creator A5071399584 @default.
- W4281674429 creator A5081837332 @default.
- W4281674429 creator A5085942365 @default.
- W4281674429 date "2022-05-30" @default.
- W4281674429 modified "2023-10-18" @default.
- W4281674429 title "The driving mode of shock-driven turbulence" @default.
- W4281674429 cites W1672824258 @default.
- W4281674429 cites W1830060740 @default.
- W4281674429 cites W1966172548 @default.
- W4281674429 cites W1966351257 @default.
- W4281674429 cites W1973306255 @default.
- W4281674429 cites W1977598213 @default.
- W4281674429 cites W1978412322 @default.
- W4281674429 cites W1978574709 @default.
- W4281674429 cites W1982178723 @default.
- W4281674429 cites W1982581400 @default.
- W4281674429 cites W1984177833 @default.
- W4281674429 cites W1986587593 @default.
- W4281674429 cites W1991323771 @default.
- W4281674429 cites W1993056331 @default.
- W4281674429 cites W1995557769 @default.
- W4281674429 cites W1999538730 @default.
- W4281674429 cites W2001401569 @default.
- W4281674429 cites W2003090644 @default.
- W4281674429 cites W2016955049 @default.
- W4281674429 cites W2019511439 @default.
- W4281674429 cites W2027544184 @default.
- W4281674429 cites W2049486755 @default.
- W4281674429 cites W2049636120 @default.
- W4281674429 cites W2051462085 @default.
- W4281674429 cites W2051762527 @default.
- W4281674429 cites W2051974748 @default.
- W4281674429 cites W2073372042 @default.
- W4281674429 cites W2073945818 @default.
- W4281674429 cites W2074969417 @default.
- W4281674429 cites W2075908089 @default.
- W4281674429 cites W2079648218 @default.
- W4281674429 cites W2105539746 @default.
- W4281674429 cites W2114788158 @default.
- W4281674429 cites W2120537494 @default.
- W4281674429 cites W2127393640 @default.
- W4281674429 cites W2136053344 @default.
- W4281674429 cites W2140347367 @default.
- W4281674429 cites W2140634422 @default.
- W4281674429 cites W2145449101 @default.
- W4281674429 cites W2147617663 @default.
- W4281674429 cites W2157482862 @default.
- W4281674429 cites W2163780962 @default.
- W4281674429 cites W2315770759 @default.
- W4281674429 cites W2466289601 @default.
- W4281674429 cites W2521288765 @default.
- W4281674429 cites W2530043748 @default.
- W4281674429 cites W2601507719 @default.
- W4281674429 cites W2729574991 @default.
- W4281674429 cites W2782621636 @default.
- W4281674429 cites W2900154314 @default.
- W4281674429 cites W2963455147 @default.
- W4281674429 cites W3041331278 @default.
- W4281674429 cites W3086957619 @default.
- W4281674429 cites W3094101440 @default.
- W4281674429 cites W3094360027 @default.
- W4281674429 cites W3098162296 @default.
- W4281674429 cites W3098443631 @default.
- W4281674429 cites W3099664184 @default.
- W4281674429 cites W3099768924 @default.
- W4281674429 cites W3101201750 @default.
- W4281674429 cites W3101395686 @default.
- W4281674429 cites W3101681008 @default.
- W4281674429 cites W3102298645 @default.
- W4281674429 cites W3102584863 @default.
- W4281674429 cites W3104136976 @default.
- W4281674429 cites W3104760060 @default.
- W4281674429 cites W3104960561 @default.
- W4281674429 cites W3105027211 @default.
- W4281674429 cites W3106013023 @default.
- W4281674429 cites W3114986566 @default.
- W4281674429 cites W3124450849 @default.
- W4281674429 cites W3124924386 @default.
- W4281674429 cites W3125608121 @default.
- W4281674429 cites W3181772715 @default.
- W4281674429 cites W3197819227 @default.
- W4281674429 cites W4241621889 @default.
- W4281674429 cites W4243066586 @default.
- W4281674429 cites W4289258829 @default.
- W4281674429 cites W4292691060 @default.
- W4281674429 cites W4292691266 @default.
- W4281674429 doi "https://doi.org/10.1093/mnras/stac1480" @default.
- W4281674429 hasPublicationYear "2022" @default.
- W4281674429 type Work @default.
- W4281674429 citedByCount "3" @default.
- W4281674429 countsByYear W42816744292022 @default.
- W4281674429 countsByYear W42816744292023 @default.