Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281679003> ?p ?o ?g. }
- W4281679003 endingPage "3712" @default.
- W4281679003 startingPage "3687" @default.
- W4281679003 abstract "Abstract Incomplete Multi-View Clustering (IMVC) attempts to give an optimal clustering solution for incomplete multi-view data that suffer from missing instances in certain views. However, most existing IMVC methods still have various drawbacks in practical applications, such as arbitrary incomplete scenarios cannot be handled; the computational cost is relatively high; most valuable nonlinear relations among samples are often ignored; complementary information among views is not sufficiently exploited. To address the above issues, in this paper, we present a novel and flexible unified graph learning framework, called Multiple Kernel-based Anchor Graph coupled low-rank Tensor learning for Incomplete Multi-View Clustering (MKAGT_IMVC), whose goal is to adaptively learn the optimal unified similarity matrix from all incomplete views. Specifically, according to the characteristics of incomplete multi-view data, MKAGT_IMVC innovatively improves an anchor selection strategy. Then, a novel cross-view anchor graph fusion mechanism is introduced to construct multiple fused complete anchor graphs, which captures more the intra-view and inter-view nonlinear relations. Moreover, a graph learning model combining low-rank tensor constraint and consensus graph constraint is developed, where all fused complete anchor graphs are regarded as prior knowledge to initialize this model. Extensive experiments conducted on eight incomplete multi-view datasets clearly show that our method delivers superior performance relative to some state-of-the-art methods in terms of clustering ability and time-consuming." @default.
- W4281679003 created "2022-06-13" @default.
- W4281679003 creator A5022036826 @default.
- W4281679003 creator A5042808252 @default.
- W4281679003 creator A5042977820 @default.
- W4281679003 creator A5054493600 @default.
- W4281679003 creator A5063343191 @default.
- W4281679003 creator A5086698089 @default.
- W4281679003 date "2022-06-02" @default.
- W4281679003 modified "2023-10-05" @default.
- W4281679003 title "Multiple kernel-based anchor graph coupled low-rank tensor learning for incomplete multi-view clustering" @default.
- W4281679003 cites W1490682695 @default.
- W4281679003 cites W1980038761 @default.
- W4281679003 cites W2043571470 @default.
- W4281679003 cites W2062671023 @default.
- W4281679003 cites W2089609272 @default.
- W4281679003 cites W2108502868 @default.
- W4281679003 cites W2129250947 @default.
- W4281679003 cites W2155904486 @default.
- W4281679003 cites W2181159407 @default.
- W4281679003 cites W2527153419 @default.
- W4281679003 cites W2565835729 @default.
- W4281679003 cites W2577472518 @default.
- W4281679003 cites W2604413995 @default.
- W4281679003 cites W2758049963 @default.
- W4281679003 cites W2797647736 @default.
- W4281679003 cites W2808465901 @default.
- W4281679003 cites W2809299793 @default.
- W4281679003 cites W2885260938 @default.
- W4281679003 cites W2896169497 @default.
- W4281679003 cites W2898233200 @default.
- W4281679003 cites W2899604627 @default.
- W4281679003 cites W2904419448 @default.
- W4281679003 cites W2906529026 @default.
- W4281679003 cites W2921065608 @default.
- W4281679003 cites W2963517422 @default.
- W4281679003 cites W2964809302 @default.
- W4281679003 cites W2965970896 @default.
- W4281679003 cites W2966840649 @default.
- W4281679003 cites W2970354123 @default.
- W4281679003 cites W2973099107 @default.
- W4281679003 cites W297461772 @default.
- W4281679003 cites W2981305139 @default.
- W4281679003 cites W3008561560 @default.
- W4281679003 cites W3021342796 @default.
- W4281679003 cites W3035751812 @default.
- W4281679003 cites W3044096495 @default.
- W4281679003 cites W3093207983 @default.
- W4281679003 cites W3098802639 @default.
- W4281679003 cites W3099865281 @default.
- W4281679003 cites W3102822594 @default.
- W4281679003 cites W3120213044 @default.
- W4281679003 cites W3122451732 @default.
- W4281679003 cites W3129809292 @default.
- W4281679003 cites W3169978599 @default.
- W4281679003 cites W3174023462 @default.
- W4281679003 cites W3176728172 @default.
- W4281679003 cites W4200024069 @default.
- W4281679003 cites W4292363360 @default.
- W4281679003 cites W4312238451 @default.
- W4281679003 doi "https://doi.org/10.1007/s10489-022-03735-6" @default.
- W4281679003 hasPublicationYear "2022" @default.
- W4281679003 type Work @default.
- W4281679003 citedByCount "2" @default.
- W4281679003 countsByYear W42816790032023 @default.
- W4281679003 crossrefType "journal-article" @default.
- W4281679003 hasAuthorship W4281679003A5022036826 @default.
- W4281679003 hasAuthorship W4281679003A5042808252 @default.
- W4281679003 hasAuthorship W4281679003A5042977820 @default.
- W4281679003 hasAuthorship W4281679003A5054493600 @default.
- W4281679003 hasAuthorship W4281679003A5063343191 @default.
- W4281679003 hasAuthorship W4281679003A5086698089 @default.
- W4281679003 hasBestOaLocation W42816790031 @default.
- W4281679003 hasConcept C119857082 @default.
- W4281679003 hasConcept C124101348 @default.
- W4281679003 hasConcept C132525143 @default.
- W4281679003 hasConcept C154945302 @default.
- W4281679003 hasConcept C2524010 @default.
- W4281679003 hasConcept C2776036281 @default.
- W4281679003 hasConcept C27964816 @default.
- W4281679003 hasConcept C33704608 @default.
- W4281679003 hasConcept C33923547 @default.
- W4281679003 hasConcept C41008148 @default.
- W4281679003 hasConcept C73555534 @default.
- W4281679003 hasConcept C80444323 @default.
- W4281679003 hasConcept C94641424 @default.
- W4281679003 hasConceptScore W4281679003C119857082 @default.
- W4281679003 hasConceptScore W4281679003C124101348 @default.
- W4281679003 hasConceptScore W4281679003C132525143 @default.
- W4281679003 hasConceptScore W4281679003C154945302 @default.
- W4281679003 hasConceptScore W4281679003C2524010 @default.
- W4281679003 hasConceptScore W4281679003C2776036281 @default.
- W4281679003 hasConceptScore W4281679003C27964816 @default.
- W4281679003 hasConceptScore W4281679003C33704608 @default.
- W4281679003 hasConceptScore W4281679003C33923547 @default.
- W4281679003 hasConceptScore W4281679003C41008148 @default.
- W4281679003 hasConceptScore W4281679003C73555534 @default.
- W4281679003 hasConceptScore W4281679003C80444323 @default.