Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281682768> ?p ?o ?g. }
- W4281682768 abstract "Patients with lung adenocarcinoma (LUAD) exhibit significant heterogeneity in therapeutic responses and overall survival (OS). In recent years, accumulating research has uncovered the critical roles of hypoxia in a variety of solid tumors, but its role in LUAD is not currently fully elucidated. This study aims to discover novel insights into the mechanistic and therapeutic implications of the hypoxia genes in LUAD cancers by exploring the potential association between hypoxia and LUAD.Four machine learning approaches were implemented to screen out potential hypoxia-related genes for the prognosis of LUAD based on gene expression profile of LUAD samples obtained from The Cancer Genome Atlas (TCGA), then validated by six cohorts of validation datasets. The risk score derived from the hypoxia-related genes was proven to be an independent factor by using the univariate and multivariate Cox regression analyses and Kaplan-Meier survival analyses. Hypoxia-related mechanisms based on tumor mutational burden (TMB), the immune activity, and therapeutic value were also performed to adequately dig deeper into the clinical value of hypoxia-related genes. Finally, the expression level of hypoxia genes was validated at protein level and clinical samples from LUAD patients at transcript levels.All patients in TCGA and GEO-LUAD group were distinctly stratified into low- and high-risk groups based on the risk score. Survival analyses demonstrated that our risk score could serve as a powerful and independent risk factor for OS, and the nomogram also exhibited high accuracy. LUAD patients in high-risk group presented worse OS, lower TMB, and lower immune activity. We found that the model is highly sensitive to immune features. Moreover, we revealed that the hypoxia-related genes had potential therapeutic value for LUAD patients based on the drug sensitivity and chemotherapeutic response prediction. The protein and gene expression levels of 10 selected hypoxia gene also showed significant difference between LUAD tumors tissues and normal tissues. The validation experiment showed that the gene transcript levels of most of their genes were consistent with the levels of their translated proteins.Our study might contribute to the optimization of risk stratification for survival and personalized management of LUAD patients by using the hypoxia genes, which will provide a valuable resource that will guide both mechanistic and therapeutic implications of the hypoxia genes in LUAD cancers." @default.
- W4281682768 created "2022-06-13" @default.
- W4281682768 creator A5001136929 @default.
- W4281682768 creator A5002593760 @default.
- W4281682768 creator A5049306248 @default.
- W4281682768 creator A5053725057 @default.
- W4281682768 creator A5062097440 @default.
- W4281682768 creator A5078296984 @default.
- W4281682768 date "2022-06-10" @default.
- W4281682768 modified "2023-10-17" @default.
- W4281682768 title "Comprehensive Analysis and Reinforcement Learning of Hypoxic Genes Based on Four Machine Learning Algorithms for Estimating the Immune Landscape, Clinical Outcomes, and Therapeutic Implications in Patients With Lung Adenocarcinoma" @default.
- W4281682768 cites W1900485818 @default.
- W4281682768 cites W1973541913 @default.
- W4281682768 cites W1979618116 @default.
- W4281682768 cites W1989654707 @default.
- W4281682768 cites W1990800079 @default.
- W4281682768 cites W2028112070 @default.
- W4281682768 cites W2035641101 @default.
- W4281682768 cites W2047057500 @default.
- W4281682768 cites W2075294566 @default.
- W4281682768 cites W2105499496 @default.
- W4281682768 cites W2163404652 @default.
- W4281682768 cites W2207085710 @default.
- W4281682768 cites W2254262262 @default.
- W4281682768 cites W2343355344 @default.
- W4281682768 cites W2417009562 @default.
- W4281682768 cites W2517374546 @default.
- W4281682768 cites W2589089825 @default.
- W4281682768 cites W2594781652 @default.
- W4281682768 cites W2774256924 @default.
- W4281682768 cites W2790196090 @default.
- W4281682768 cites W2797675588 @default.
- W4281682768 cites W2889646458 @default.
- W4281682768 cites W2900563854 @default.
- W4281682768 cites W2901857397 @default.
- W4281682768 cites W2927151881 @default.
- W4281682768 cites W2937200679 @default.
- W4281682768 cites W2945216833 @default.
- W4281682768 cites W2955582243 @default.
- W4281682768 cites W2968550377 @default.
- W4281682768 cites W2978708928 @default.
- W4281682768 cites W2982398814 @default.
- W4281682768 cites W2991567593 @default.
- W4281682768 cites W2998690381 @default.
- W4281682768 cites W3014229845 @default.
- W4281682768 cites W3014660178 @default.
- W4281682768 cites W3015039969 @default.
- W4281682768 cites W3019242196 @default.
- W4281682768 cites W3026165734 @default.
- W4281682768 cites W3035358721 @default.
- W4281682768 cites W3035843649 @default.
- W4281682768 cites W3044901574 @default.
- W4281682768 cites W3049745506 @default.
- W4281682768 cites W3088665533 @default.
- W4281682768 cites W3090740945 @default.
- W4281682768 cites W3094134635 @default.
- W4281682768 cites W3106757743 @default.
- W4281682768 cites W3106909450 @default.
- W4281682768 cites W3110536952 @default.
- W4281682768 cites W3137482466 @default.
- W4281682768 cites W3153827829 @default.
- W4281682768 cites W3162387993 @default.
- W4281682768 cites W3164407807 @default.
- W4281682768 cites W3164579505 @default.
- W4281682768 cites W3172925362 @default.
- W4281682768 cites W3173067664 @default.
- W4281682768 cites W3174136347 @default.
- W4281682768 cites W3176632828 @default.
- W4281682768 cites W3176777156 @default.
- W4281682768 cites W3176877288 @default.
- W4281682768 cites W3180549468 @default.
- W4281682768 cites W4206384507 @default.
- W4281682768 doi "https://doi.org/10.3389/fimmu.2022.906889" @default.
- W4281682768 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35757722" @default.
- W4281682768 hasPublicationYear "2022" @default.
- W4281682768 type Work @default.
- W4281682768 citedByCount "2" @default.
- W4281682768 countsByYear W42816827682022 @default.
- W4281682768 countsByYear W42816827682023 @default.
- W4281682768 crossrefType "journal-article" @default.
- W4281682768 hasAuthorship W4281682768A5001136929 @default.
- W4281682768 hasAuthorship W4281682768A5002593760 @default.
- W4281682768 hasAuthorship W4281682768A5049306248 @default.
- W4281682768 hasAuthorship W4281682768A5053725057 @default.
- W4281682768 hasAuthorship W4281682768A5062097440 @default.
- W4281682768 hasAuthorship W4281682768A5078296984 @default.
- W4281682768 hasBestOaLocation W42816827681 @default.
- W4281682768 hasConcept C104317684 @default.
- W4281682768 hasConcept C10515644 @default.
- W4281682768 hasConcept C121608353 @default.
- W4281682768 hasConcept C126322002 @default.
- W4281682768 hasConcept C143998085 @default.
- W4281682768 hasConcept C178790620 @default.
- W4281682768 hasConcept C185592680 @default.
- W4281682768 hasConcept C203014093 @default.
- W4281682768 hasConcept C2776256026 @default.
- W4281682768 hasConcept C2781182431 @default.
- W4281682768 hasConcept C34626388 @default.
- W4281682768 hasConcept C50382708 @default.
- W4281682768 hasConcept C540031477 @default.