Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281684024> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4281684024 abstract "Abstract Background Mental health contact centers (also known as Hotlines) offer crisis intervention and counselling by phone calls and online chats. These mental health helplines have shown great success in improving the mental state of the callers, and are increasingly becoming popular in Israel and worldwide. Unfortunately, our knowledge about how to conduct successful routing of callers to counselling agents has been limited due to lack of large-scale data with labeled outcomes of the interactions. To date, many of these contact centers are overwhelmed by chat requests and operate in a simple first-come-first-serve (FCFS) scheduling policy which, combined, may lead to many callers receiving suboptimal counselling or abandoning the service before being treated. In this work our goal is to improve the efficiency of mental health contact centers by using a novel machine-learning based routing policy. Methods We present a large-scale machine learning-based analysis of real-world data from the online contact center of ERAN, the Israeli Association for Emotional First Aid. The data includes over 35,000 conversations over a 2-years period. Based on this analysis, we present a novel call routing method, that integrates advanced AI-techniques including the Monte Carlo tree search algorithm. We conducted an experiment that included various realistic simulations of incoming calls to contact centers, based on data from ERAN. We divided the simulations into two common settings: standard call flow and heavy call flow. In order to establish a baseline, we compared our proposed solution to two baseline methods: (1) The FCFS method; and (2) a greedy solution based on machine learning predictions. Our comparison focuses on two metrics - the number of calls served and the average feedback of the callers (i.e., quality of the chats). Results In the preliminary analysis, we identify indicative features that significantly contribute to the effectiveness of a conversation and demonstrate high accuracy in predicting the expected duration and the callers’ feedback. In the routing methods evaluation, we find that in heavy call flow settings, our proposed method significantly outperforms the other methods in both the quantity of served calls and average feedback. Most notably, we find that in the heavy call flow settings, our method improves the average feedback by 24% compared to FCFS and by 4% compared to the greedy solution. Regarding the standard-flow setting, we find that our proposed method significantly outperforms the FCFS method in the callers’ average feedback with a 12% improvement. However, in this setting, we did not find a significant difference between all methods in the quantity of served-calls and no significant difference was found between our proposed method and the greedy solution. Conclusion The proposed routing policy has the potential to significantly improve the performance of mental health contact centers, especially in peak hours. Leveraging artificial intelligence techniques, such as machine learning algorithms, combined with real-world data can bring about a significant and necessary leap forward in the way mental health hotlines operate and consequently reduce the burden of mental illnesses on health systems. However, implementation and evaluation in an operational contact center is necessary in order to verify that the results replicate in practice." @default.
- W4281684024 created "2022-06-13" @default.
- W4281684024 creator A5023433155 @default.
- W4281684024 creator A5035282726 @default.
- W4281684024 creator A5082947685 @default.
- W4281684024 date "2022-06-03" @default.
- W4281684024 modified "2023-10-13" @default.
- W4281684024 title "Machine-learning based routing of callers in an Israeli mental health hotline" @default.
- W4281684024 cites W172260869 @default.
- W4281684024 cites W1965732238 @default.
- W4281684024 cites W1980867644 @default.
- W4281684024 cites W1995245183 @default.
- W4281684024 cites W1997840820 @default.
- W4281684024 cites W2039698234 @default.
- W4281684024 cites W2080417954 @default.
- W4281684024 cites W2109398368 @default.
- W4281684024 cites W2119338125 @default.
- W4281684024 cites W2122320538 @default.
- W4281684024 cites W2133365120 @default.
- W4281684024 cites W2135458935 @default.
- W4281684024 cites W2142046876 @default.
- W4281684024 cites W2163430069 @default.
- W4281684024 cites W2298106964 @default.
- W4281684024 cites W2327678559 @default.
- W4281684024 cites W2481114227 @default.
- W4281684024 cites W2609069495 @default.
- W4281684024 cites W2799766028 @default.
- W4281684024 cites W2802996460 @default.
- W4281684024 cites W2900876783 @default.
- W4281684024 cites W2929068185 @default.
- W4281684024 cites W2962846301 @default.
- W4281684024 cites W2964262738 @default.
- W4281684024 cites W2992552345 @default.
- W4281684024 cites W2999286925 @default.
- W4281684024 cites W3009489483 @default.
- W4281684024 cites W3015658132 @default.
- W4281684024 cites W3027610659 @default.
- W4281684024 cites W3089787240 @default.
- W4281684024 cites W4229977739 @default.
- W4281684024 cites W4244895750 @default.
- W4281684024 doi "https://doi.org/10.1186/s13584-022-00534-9" @default.
- W4281684024 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35659290" @default.
- W4281684024 hasPublicationYear "2022" @default.
- W4281684024 type Work @default.
- W4281684024 citedByCount "2" @default.
- W4281684024 countsByYear W42816840242023 @default.
- W4281684024 crossrefType "journal-article" @default.
- W4281684024 hasAuthorship W4281684024A5023433155 @default.
- W4281684024 hasAuthorship W4281684024A5035282726 @default.
- W4281684024 hasAuthorship W4281684024A5082947685 @default.
- W4281684024 hasBestOaLocation W42816840241 @default.
- W4281684024 hasConcept C118552586 @default.
- W4281684024 hasConcept C134362201 @default.
- W4281684024 hasConcept C138885662 @default.
- W4281684024 hasConcept C141668000 @default.
- W4281684024 hasConcept C2778707766 @default.
- W4281684024 hasConcept C41008148 @default.
- W4281684024 hasConcept C41895202 @default.
- W4281684024 hasConcept C71924100 @default.
- W4281684024 hasConcept C76155785 @default.
- W4281684024 hasConceptScore W4281684024C118552586 @default.
- W4281684024 hasConceptScore W4281684024C134362201 @default.
- W4281684024 hasConceptScore W4281684024C138885662 @default.
- W4281684024 hasConceptScore W4281684024C141668000 @default.
- W4281684024 hasConceptScore W4281684024C2778707766 @default.
- W4281684024 hasConceptScore W4281684024C41008148 @default.
- W4281684024 hasConceptScore W4281684024C41895202 @default.
- W4281684024 hasConceptScore W4281684024C71924100 @default.
- W4281684024 hasConceptScore W4281684024C76155785 @default.
- W4281684024 hasFunder F4320323971 @default.
- W4281684024 hasIssue "1" @default.
- W4281684024 hasLocation W42816840241 @default.
- W4281684024 hasLocation W42816840242 @default.
- W4281684024 hasLocation W42816840243 @default.
- W4281684024 hasOpenAccess W4281684024 @default.
- W4281684024 hasPrimaryLocation W42816840241 @default.
- W4281684024 hasRelatedWork W2033799512 @default.
- W4281684024 hasRelatedWork W2057946780 @default.
- W4281684024 hasRelatedWork W2417094339 @default.
- W4281684024 hasRelatedWork W2630417593 @default.
- W4281684024 hasRelatedWork W2748952813 @default.
- W4281684024 hasRelatedWork W2899084033 @default.
- W4281684024 hasRelatedWork W3087948315 @default.
- W4281684024 hasRelatedWork W3179472593 @default.
- W4281684024 hasRelatedWork W4205907462 @default.
- W4281684024 hasRelatedWork W4214752863 @default.
- W4281684024 hasVolume "11" @default.
- W4281684024 isParatext "false" @default.
- W4281684024 isRetracted "false" @default.
- W4281684024 workType "article" @default.