Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281688654> ?p ?o ?g. }
- W4281688654 endingPage "128001" @default.
- W4281688654 startingPage "128001" @default.
- W4281688654 abstract "Although the growing number of synthetic aperture radar (SAR) satellites has increased their application in flood-extent mapping, predictive models for the analysis of flood dynamics that are independent of sensor characteristics must be developed to fully extract information from SAR images for flood mitigation. This study aimed to develop hybrid machine-learning models for flood mapping in the Ahvaz region, Iran, based on SAR data. Each hybrid model consists of a support vector machine (SVM) algorithm coupled with one of the following metaheuristic optimization procedures: grey wolf optimization (GWO), differential evolution, and the imperialist competitive algorithm. Sentinel-1 acquired SAR images before and during flooding between 20 March and 26 May of 2019. The goodness-of-fit level and predictive capability of each model were scrutinized using overall accuracy, producer accuracy, and user accuracy. The SVM-GWO approach yielded the highest accuracy with overall accuracies of 96.07% and 93.39% in the training and validation steps, respectively. Furthermore, this hybrid model provided the most accurate classification of water-inundation class based on producer accuracy (96.67%) and user accuracy (95.05%). The results highlight that wetland is the last land-use/land-cover type to return to normal conditions due to the many previously dry oxbow lakes that could trap water for a long time. Furthermore, the nine most suitable sites for flood-protection structures (e.g., embankments and levees) were identified based on floodwater distribution analysis. This work describes a robust, data-parsimonious approach that will benefit flood mitigation studies seeking to identify the most suitable locations for embankments based on spatio-temporal flood dynamics." @default.
- W4281688654 created "2022-06-13" @default.
- W4281688654 creator A5001816873 @default.
- W4281688654 creator A5030321903 @default.
- W4281688654 creator A5033592648 @default.
- W4281688654 creator A5039122205 @default.
- W4281688654 creator A5039567207 @default.
- W4281688654 creator A5041402625 @default.
- W4281688654 creator A5043361326 @default.
- W4281688654 creator A5045171576 @default.
- W4281688654 creator A5053923666 @default.
- W4281688654 creator A5056706783 @default.
- W4281688654 creator A5077439959 @default.
- W4281688654 creator A5085309570 @default.
- W4281688654 date "2022-08-01" @default.
- W4281688654 modified "2023-10-16" @default.
- W4281688654 title "Large-scale dynamic flood monitoring in an arid-zone floodplain using SAR data and hybrid machine-learning models" @default.
- W4281688654 cites W1589263040 @default.
- W4281688654 cites W1595159159 @default.
- W4281688654 cites W1833244947 @default.
- W4281688654 cites W1975914988 @default.
- W4281688654 cites W1977734274 @default.
- W4281688654 cites W1980728112 @default.
- W4281688654 cites W1982749343 @default.
- W4281688654 cites W1999070250 @default.
- W4281688654 cites W2012118327 @default.
- W4281688654 cites W2015204276 @default.
- W4281688654 cites W2015685608 @default.
- W4281688654 cites W2017496690 @default.
- W4281688654 cites W2033011996 @default.
- W4281688654 cites W2036632898 @default.
- W4281688654 cites W2037385122 @default.
- W4281688654 cites W2038546254 @default.
- W4281688654 cites W2042315239 @default.
- W4281688654 cites W2042788244 @default.
- W4281688654 cites W2054368795 @default.
- W4281688654 cites W2056646063 @default.
- W4281688654 cites W2061438946 @default.
- W4281688654 cites W2063907334 @default.
- W4281688654 cites W2084773003 @default.
- W4281688654 cites W2094776444 @default.
- W4281688654 cites W2110947259 @default.
- W4281688654 cites W2119518219 @default.
- W4281688654 cites W2140624467 @default.
- W4281688654 cites W2150010190 @default.
- W4281688654 cites W2152273606 @default.
- W4281688654 cites W2216376507 @default.
- W4281688654 cites W2232465653 @default.
- W4281688654 cites W2313646911 @default.
- W4281688654 cites W2330538634 @default.
- W4281688654 cites W2345270225 @default.
- W4281688654 cites W2414577262 @default.
- W4281688654 cites W2463445076 @default.
- W4281688654 cites W2489132398 @default.
- W4281688654 cites W2493783119 @default.
- W4281688654 cites W2500448636 @default.
- W4281688654 cites W2503282691 @default.
- W4281688654 cites W2523236392 @default.
- W4281688654 cites W2566744289 @default.
- W4281688654 cites W2604626402 @default.
- W4281688654 cites W2728392196 @default.
- W4281688654 cites W2756063524 @default.
- W4281688654 cites W2757662287 @default.
- W4281688654 cites W2765274113 @default.
- W4281688654 cites W2770073247 @default.
- W4281688654 cites W2774403371 @default.
- W4281688654 cites W2777884624 @default.
- W4281688654 cites W2779834058 @default.
- W4281688654 cites W2787879829 @default.
- W4281688654 cites W2790998290 @default.
- W4281688654 cites W2791961911 @default.
- W4281688654 cites W2793014151 @default.
- W4281688654 cites W2803935259 @default.
- W4281688654 cites W2809890364 @default.
- W4281688654 cites W2810761072 @default.
- W4281688654 cites W2810893806 @default.
- W4281688654 cites W2885142169 @default.
- W4281688654 cites W2887223098 @default.
- W4281688654 cites W2892669811 @default.
- W4281688654 cites W2895196240 @default.
- W4281688654 cites W2897438944 @default.
- W4281688654 cites W2901919361 @default.
- W4281688654 cites W2905319558 @default.
- W4281688654 cites W2921468651 @default.
- W4281688654 cites W2946020082 @default.
- W4281688654 cites W2949161208 @default.
- W4281688654 cites W2953011380 @default.
- W4281688654 cites W2955716717 @default.
- W4281688654 cites W2955858817 @default.
- W4281688654 cites W2964240925 @default.
- W4281688654 cites W2964556798 @default.
- W4281688654 cites W2972082796 @default.
- W4281688654 cites W2975562661 @default.
- W4281688654 cites W2983838464 @default.
- W4281688654 cites W2985766090 @default.
- W4281688654 cites W2985909078 @default.
- W4281688654 cites W2989539798 @default.
- W4281688654 cites W2989700724 @default.