Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281691647> ?p ?o ?g. }
- W4281691647 endingPage "162" @default.
- W4281691647 startingPage "144" @default.
- W4281691647 abstract "Deep learning has been created as a practical artificial intelligence strategy that takes various layers of information and gives the best in the effects of different classes. The use of deep learning has indicated exceptional execution in other regions, especially in image clustering, division, and recognition. The ongoing advanced learning strategies implement image clustering, which expects to recognize subsequent-level of classifications . This paper gives a definite audit of different deep arrangements and models featuring attributes of a specific convolutional neural network model. Initially, we depicted the working of Convolutional neural networks and their segments, followed by a point-by-point display of various Convolutional Neural Network models beginning with the old-style LeNet model to AlexNet, GoogleNet, VGGNet, ResNet, DenseNet, Xception, PNAS/ENAS, and EfficientNet. We concluded the significant challenges associated with Spatial Exploitation based Convolutional neural network architecture, Depth Based Convolutional neural network architecture, Multi-Path based Convolutional neural network architectures, and width based Convolutional neural network architectures. A definite summary of the review, including the frameworks, information base, application, and precision for every model, is discussed for serving it as the future scope in the above areas." @default.
- W4281691647 created "2022-06-13" @default.
- W4281691647 creator A5005877741 @default.
- W4281691647 creator A5032243366 @default.
- W4281691647 creator A5032261150 @default.
- W4281691647 creator A5039363777 @default.
- W4281691647 creator A5073411679 @default.
- W4281691647 creator A5085933596 @default.
- W4281691647 date "2022-08-01" @default.
- W4281691647 modified "2023-10-05" @default.
- W4281691647 title "A federated calibration scheme for convolutional neural networks: Models, applications and challenges" @default.
- W4281691647 cites W2097117768 @default.
- W4281691647 cites W2102605133 @default.
- W4281691647 cites W2111072639 @default.
- W4281691647 cites W2112796928 @default.
- W4281691647 cites W2130325614 @default.
- W4281691647 cites W2191835017 @default.
- W4281691647 cites W2194775991 @default.
- W4281691647 cites W2210976041 @default.
- W4281691647 cites W2216125271 @default.
- W4281691647 cites W2256679588 @default.
- W4281691647 cites W2257979135 @default.
- W4281691647 cites W2529005704 @default.
- W4281691647 cites W2542055599 @default.
- W4281691647 cites W2549139847 @default.
- W4281691647 cites W2558580397 @default.
- W4281691647 cites W2580683366 @default.
- W4281691647 cites W2593792475 @default.
- W4281691647 cites W2604319603 @default.
- W4281691647 cites W2744078350 @default.
- W4281691647 cites W2750432752 @default.
- W4281691647 cites W2752782242 @default.
- W4281691647 cites W2759692151 @default.
- W4281691647 cites W2767547957 @default.
- W4281691647 cites W2774297389 @default.
- W4281691647 cites W2775491667 @default.
- W4281691647 cites W2784025535 @default.
- W4281691647 cites W2796352538 @default.
- W4281691647 cites W2796970379 @default.
- W4281691647 cites W2810292802 @default.
- W4281691647 cites W2919115771 @default.
- W4281691647 cites W2922119014 @default.
- W4281691647 cites W2958150439 @default.
- W4281691647 cites W2962949934 @default.
- W4281691647 cites W2963163009 @default.
- W4281691647 cites W2964350391 @default.
- W4281691647 cites W2969950143 @default.
- W4281691647 cites W2996367417 @default.
- W4281691647 cites W3048247395 @default.
- W4281691647 cites W3107335993 @default.
- W4281691647 cites W3124951096 @default.
- W4281691647 cites W3140854437 @default.
- W4281691647 cites W3154525205 @default.
- W4281691647 cites W3159346494 @default.
- W4281691647 cites W4235960156 @default.
- W4281691647 doi "https://doi.org/10.1016/j.comcom.2022.05.035" @default.
- W4281691647 hasPublicationYear "2022" @default.
- W4281691647 type Work @default.
- W4281691647 citedByCount "15" @default.
- W4281691647 countsByYear W42816916472022 @default.
- W4281691647 countsByYear W42816916472023 @default.
- W4281691647 crossrefType "journal-article" @default.
- W4281691647 hasAuthorship W4281691647A5005877741 @default.
- W4281691647 hasAuthorship W4281691647A5032243366 @default.
- W4281691647 hasAuthorship W4281691647A5032261150 @default.
- W4281691647 hasAuthorship W4281691647A5039363777 @default.
- W4281691647 hasAuthorship W4281691647A5073411679 @default.
- W4281691647 hasAuthorship W4281691647A5085933596 @default.
- W4281691647 hasConcept C105795698 @default.
- W4281691647 hasConcept C119857082 @default.
- W4281691647 hasConcept C124101348 @default.
- W4281691647 hasConcept C134306372 @default.
- W4281691647 hasConcept C154945302 @default.
- W4281691647 hasConcept C165838908 @default.
- W4281691647 hasConcept C31258907 @default.
- W4281691647 hasConcept C33923547 @default.
- W4281691647 hasConcept C41008148 @default.
- W4281691647 hasConcept C77618280 @default.
- W4281691647 hasConcept C81363708 @default.
- W4281691647 hasConceptScore W4281691647C105795698 @default.
- W4281691647 hasConceptScore W4281691647C119857082 @default.
- W4281691647 hasConceptScore W4281691647C124101348 @default.
- W4281691647 hasConceptScore W4281691647C134306372 @default.
- W4281691647 hasConceptScore W4281691647C154945302 @default.
- W4281691647 hasConceptScore W4281691647C165838908 @default.
- W4281691647 hasConceptScore W4281691647C31258907 @default.
- W4281691647 hasConceptScore W4281691647C33923547 @default.
- W4281691647 hasConceptScore W4281691647C41008148 @default.
- W4281691647 hasConceptScore W4281691647C77618280 @default.
- W4281691647 hasConceptScore W4281691647C81363708 @default.
- W4281691647 hasFunder F4320321145 @default.
- W4281691647 hasLocation W42816916471 @default.
- W4281691647 hasOpenAccess W4281691647 @default.
- W4281691647 hasPrimaryLocation W42816916471 @default.
- W4281691647 hasRelatedWork W2130966263 @default.
- W4281691647 hasRelatedWork W2748454020 @default.
- W4281691647 hasRelatedWork W2961085424 @default.
- W4281691647 hasRelatedWork W3016958897 @default.