Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281691680> ?p ?o ?g. }
- W4281691680 endingPage "117637" @default.
- W4281691680 startingPage "117637" @default.
- W4281691680 abstract "Financial time series forecasting has been an attractive application of machine learning techniques because an advanced forecasting method can help to accurately predict price changes in markets and make good trading profits. In this study, an emerging machine learning approach, named the dendritic neuron model (DNM), is innovatively applied to forecast financial time series. To pursue better prediction performance, a novel scale-free differential evolution (SFDE) is defined as the training algorithm of the DNM, which can well control the balance between exploration and exploitation. In addition, the maximum Lyapunov exponent is used to detect the chaotic property of financial time series; then, the series is reconstructed into a phase space with high dimension before the prediction, where the time delay of the phase space is calculated by a mutual information method and the embedding dimension is separately determined by a false nearest neighbors approach. In our experiments, eight benchmark stock price indices selected from developed markets and emerging markets are used to validate the effectiveness and efficiency of the proposed forecasting model. Overall, the experimental results illustrate that the DNM trained by the SFDE algorithm yields better forecasting performances than other prevailing models and that it can be considered a reliable and satisfactory forecasting tool for predicting price changes in financial markets for practical applications." @default.
- W4281691680 created "2022-06-13" @default.
- W4281691680 creator A5041126817 @default.
- W4281691680 creator A5046906366 @default.
- W4281691680 creator A5057498674 @default.
- W4281691680 creator A5076863238 @default.
- W4281691680 creator A5087985997 @default.
- W4281691680 creator A5089717580 @default.
- W4281691680 date "2022-11-01" @default.
- W4281691680 modified "2023-10-18" @default.
- W4281691680 title "Adopting a dendritic neural model for predicting stock price index movement" @default.
- W4281691680 cites W1554555474 @default.
- W4281691680 cites W1792666317 @default.
- W4281691680 cites W1975938969 @default.
- W4281691680 cites W1978520392 @default.
- W4281691680 cites W1980486587 @default.
- W4281691680 cites W1980836123 @default.
- W4281691680 cites W1981531537 @default.
- W4281691680 cites W1986078433 @default.
- W4281691680 cites W1995174605 @default.
- W4281691680 cites W1995972800 @default.
- W4281691680 cites W1999996900 @default.
- W4281691680 cites W2000322714 @default.
- W4281691680 cites W2012079387 @default.
- W4281691680 cites W2017115408 @default.
- W4281691680 cites W2017537474 @default.
- W4281691680 cites W2020134397 @default.
- W4281691680 cites W2025623395 @default.
- W4281691680 cites W2027495417 @default.
- W4281691680 cites W2031365860 @default.
- W4281691680 cites W2032170121 @default.
- W4281691680 cites W2040704490 @default.
- W4281691680 cites W2040846697 @default.
- W4281691680 cites W2047175362 @default.
- W4281691680 cites W2077847090 @default.
- W4281691680 cites W2093500283 @default.
- W4281691680 cites W2097332485 @default.
- W4281691680 cites W2152254020 @default.
- W4281691680 cites W2176313025 @default.
- W4281691680 cites W2402395425 @default.
- W4281691680 cites W2469895609 @default.
- W4281691680 cites W2792725260 @default.
- W4281691680 cites W2888351819 @default.
- W4281691680 cites W2890111090 @default.
- W4281691680 cites W2912185124 @default.
- W4281691680 cites W3009739946 @default.
- W4281691680 cites W3017210342 @default.
- W4281691680 cites W3026986712 @default.
- W4281691680 cites W3082443559 @default.
- W4281691680 cites W3124185353 @default.
- W4281691680 cites W333233685 @default.
- W4281691680 cites W4231546411 @default.
- W4281691680 cites W4252684946 @default.
- W4281691680 doi "https://doi.org/10.1016/j.eswa.2022.117637" @default.
- W4281691680 hasPublicationYear "2022" @default.
- W4281691680 type Work @default.
- W4281691680 citedByCount "5" @default.
- W4281691680 countsByYear W42816916802022 @default.
- W4281691680 countsByYear W42816916802023 @default.
- W4281691680 crossrefType "journal-article" @default.
- W4281691680 hasAuthorship W4281691680A5041126817 @default.
- W4281691680 hasAuthorship W4281691680A5046906366 @default.
- W4281691680 hasAuthorship W4281691680A5057498674 @default.
- W4281691680 hasAuthorship W4281691680A5076863238 @default.
- W4281691680 hasAuthorship W4281691680A5087985997 @default.
- W4281691680 hasAuthorship W4281691680A5089717580 @default.
- W4281691680 hasConcept C107038049 @default.
- W4281691680 hasConcept C136764020 @default.
- W4281691680 hasConcept C138885662 @default.
- W4281691680 hasConcept C143724316 @default.
- W4281691680 hasConcept C149782125 @default.
- W4281691680 hasConcept C151730666 @default.
- W4281691680 hasConcept C154945302 @default.
- W4281691680 hasConcept C2777382242 @default.
- W4281691680 hasConcept C2780226923 @default.
- W4281691680 hasConcept C2988984586 @default.
- W4281691680 hasConcept C33923547 @default.
- W4281691680 hasConcept C41008148 @default.
- W4281691680 hasConcept C50644808 @default.
- W4281691680 hasConcept C86803240 @default.
- W4281691680 hasConceptScore W4281691680C107038049 @default.
- W4281691680 hasConceptScore W4281691680C136764020 @default.
- W4281691680 hasConceptScore W4281691680C138885662 @default.
- W4281691680 hasConceptScore W4281691680C143724316 @default.
- W4281691680 hasConceptScore W4281691680C149782125 @default.
- W4281691680 hasConceptScore W4281691680C151730666 @default.
- W4281691680 hasConceptScore W4281691680C154945302 @default.
- W4281691680 hasConceptScore W4281691680C2777382242 @default.
- W4281691680 hasConceptScore W4281691680C2780226923 @default.
- W4281691680 hasConceptScore W4281691680C2988984586 @default.
- W4281691680 hasConceptScore W4281691680C33923547 @default.
- W4281691680 hasConceptScore W4281691680C41008148 @default.
- W4281691680 hasConceptScore W4281691680C50644808 @default.
- W4281691680 hasConceptScore W4281691680C86803240 @default.
- W4281691680 hasLocation W42816916801 @default.
- W4281691680 hasOpenAccess W4281691680 @default.
- W4281691680 hasPrimaryLocation W42816916801 @default.
- W4281691680 hasRelatedWork W2183530853 @default.