Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281692010> ?p ?o ?g. }
- W4281692010 endingPage "e221819" @default.
- W4281692010 startingPage "e221819" @default.
- W4281692010 abstract "<h3>Importance</h3> In patients with resectable colorectal cancer liver metastases (CRLM), the choice of surgical technique and resection margin are the only variables that are under the surgeon’s direct control and may influence oncologic outcomes. There is currently no consensus on the optimal margin width. <h3>Objective</h3> To determine the optimal margin width in CRLM by using artificial intelligence–based techniques developed by the Massachusetts Institute of Technology and to assess whether optimal margin width should be individualized based on patient characteristics. <h3>Design, Setting, and Participants</h3> The internal cohort of the study included patients who underwent curative-intent surgery for<i>KRAS</i>-variant CRLM between January 1, 2000, and December 31, 2017, at Johns Hopkins Hospital, Baltimore, Maryland, Memorial Sloan Kettering Cancer Center, New York, New York, and Charité–University of Berlin, Berlin, Germany. Patients from institutions in France, Norway, the US, Austria, Argentina, and Japan were retrospectively identified from institutional databases and formed the external cohort of the study. Data were analyzed from April 15, 2019, to November 11, 2021. <h3>Exposures</h3> Hepatectomy. <h3>Main Outcomes and Measures</h3> Patients with<i>KRAS-</i>variant CRLM who underwent surgery between 2000 and 2017 at 3 tertiary centers formed the internal cohort (training and testing). In the training cohort, an artificial intelligence–based technique called optimal policy trees (OPTs) was used by building on random forest (RF) predictive models to infer the margin width associated with the maximal decrease in death probability for a given patient (ie, optimal margin width). The RF component was validated by calculating its area under the curve (AUC) in the testing cohort, whereas the OPT component was validated by a game theory–based approach called Shapley additive explanations (SHAP). Patients from international institutions formed an external validation cohort, and a new RF model was trained to externally validate the OPT-based optimal margin values. <h3>Results</h3> This cohort study included a total of 1843 patients (internal cohort, 965; external cohort, 878). The internal cohort included 386 patients (median [IQR] age, 58.3 [49.0-68.7] years; 200 men [51.8%]) with<i>KRAS</i>-variant tumors. The AUC of the RF counterfactual model was 0.76 in both the internal training and testing cohorts, which is the highest ever reported. The recommended optimal margin widths for patient subgroups A, B, C, and D were 6, 7, 12, and 7 mm, respectively. The SHAP analysis largely confirmed this by suggesting 6 to 7 mm for subgroup A, 7 mm for subgroup B, 7 to 8 mm for subgroup C, and 7 mm for subgroup D. The external cohort included 375 patients (median [IQR] age, 61.0 [53.0-70.0] years; 218 men [58.1%]) with<i>KRAS</i>-variant tumors. The new RF model had an AUC of 0.78, which allowed for a reliable external validation of the OPT-based optimal margin. The external validation was successful as it confirmed the association of the optimal margin width of 7 mm with a considerable prolongation of survival in the external cohort. <h3>Conclusions and Relevance</h3> This cohort study used artificial intelligence–based methodologies to provide a possible resolution to the long-standing debate on optimal margin width in CRLM." @default.
- W4281692010 created "2022-06-13" @default.
- W4281692010 creator A5001643386 @default.
- W4281692010 creator A5002050163 @default.
- W4281692010 creator A5009465403 @default.
- W4281692010 creator A5010209053 @default.
- W4281692010 creator A5012704811 @default.
- W4281692010 creator A5014748431 @default.
- W4281692010 creator A5020017074 @default.
- W4281692010 creator A5021799111 @default.
- W4281692010 creator A5023657582 @default.
- W4281692010 creator A5024037041 @default.
- W4281692010 creator A5025940525 @default.
- W4281692010 creator A5027065185 @default.
- W4281692010 creator A5027737835 @default.
- W4281692010 creator A5035837487 @default.
- W4281692010 creator A5038707461 @default.
- W4281692010 creator A5039843730 @default.
- W4281692010 creator A5043112957 @default.
- W4281692010 creator A5043460153 @default.
- W4281692010 creator A5044469700 @default.
- W4281692010 creator A5048961414 @default.
- W4281692010 creator A5049177641 @default.
- W4281692010 creator A5050387136 @default.
- W4281692010 creator A5051619233 @default.
- W4281692010 creator A5058146274 @default.
- W4281692010 creator A5061044678 @default.
- W4281692010 creator A5064470352 @default.
- W4281692010 creator A5065053545 @default.
- W4281692010 creator A5065485846 @default.
- W4281692010 creator A5065551581 @default.
- W4281692010 creator A5071514857 @default.
- W4281692010 creator A5072222636 @default.
- W4281692010 creator A5074813969 @default.
- W4281692010 creator A5074875010 @default.
- W4281692010 creator A5080539654 @default.
- W4281692010 creator A5090839601 @default.
- W4281692010 date "2022-08-10" @default.
- W4281692010 modified "2023-10-18" @default.
- W4281692010 title "Using Artificial Intelligence to Find the Optimal Margin Width in Hepatectomy for Colorectal Cancer Liver Metastases" @default.
- W4281692010 cites W1849119602 @default.
- W4281692010 cites W1982962956 @default.
- W4281692010 cites W1996010485 @default.
- W4281692010 cites W2081317220 @default.
- W4281692010 cites W2085813570 @default.
- W4281692010 cites W2118768896 @default.
- W4281692010 cites W2163420070 @default.
- W4281692010 cites W2208550830 @default.
- W4281692010 cites W2309451803 @default.
- W4281692010 cites W2463856396 @default.
- W4281692010 cites W2498119267 @default.
- W4281692010 cites W2525481188 @default.
- W4281692010 cites W2762881123 @default.
- W4281692010 cites W2770274990 @default.
- W4281692010 cites W2790381016 @default.
- W4281692010 cites W2892741787 @default.
- W4281692010 cites W2902029138 @default.
- W4281692010 cites W2902213565 @default.
- W4281692010 cites W2999615587 @default.
- W4281692010 cites W3025024531 @default.
- W4281692010 cites W3208088302 @default.
- W4281692010 cites W4230738814 @default.
- W4281692010 cites W4244829563 @default.
- W4281692010 doi "https://doi.org/10.1001/jamasurg.2022.1819" @default.
- W4281692010 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35648428" @default.
- W4281692010 hasPublicationYear "2022" @default.
- W4281692010 type Work @default.
- W4281692010 citedByCount "12" @default.
- W4281692010 countsByYear W42816920102022 @default.
- W4281692010 countsByYear W42816920102023 @default.
- W4281692010 crossrefType "journal-article" @default.
- W4281692010 hasAuthorship W4281692010A5001643386 @default.
- W4281692010 hasAuthorship W4281692010A5002050163 @default.
- W4281692010 hasAuthorship W4281692010A5009465403 @default.
- W4281692010 hasAuthorship W4281692010A5010209053 @default.
- W4281692010 hasAuthorship W4281692010A5012704811 @default.
- W4281692010 hasAuthorship W4281692010A5014748431 @default.
- W4281692010 hasAuthorship W4281692010A5020017074 @default.
- W4281692010 hasAuthorship W4281692010A5021799111 @default.
- W4281692010 hasAuthorship W4281692010A5023657582 @default.
- W4281692010 hasAuthorship W4281692010A5024037041 @default.
- W4281692010 hasAuthorship W4281692010A5025940525 @default.
- W4281692010 hasAuthorship W4281692010A5027065185 @default.
- W4281692010 hasAuthorship W4281692010A5027737835 @default.
- W4281692010 hasAuthorship W4281692010A5035837487 @default.
- W4281692010 hasAuthorship W4281692010A5038707461 @default.
- W4281692010 hasAuthorship W4281692010A5039843730 @default.
- W4281692010 hasAuthorship W4281692010A5043112957 @default.
- W4281692010 hasAuthorship W4281692010A5043460153 @default.
- W4281692010 hasAuthorship W4281692010A5044469700 @default.
- W4281692010 hasAuthorship W4281692010A5048961414 @default.
- W4281692010 hasAuthorship W4281692010A5049177641 @default.
- W4281692010 hasAuthorship W4281692010A5050387136 @default.
- W4281692010 hasAuthorship W4281692010A5051619233 @default.
- W4281692010 hasAuthorship W4281692010A5058146274 @default.
- W4281692010 hasAuthorship W4281692010A5061044678 @default.
- W4281692010 hasAuthorship W4281692010A5064470352 @default.
- W4281692010 hasAuthorship W4281692010A5065053545 @default.