Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281694696> ?p ?o ?g. }
- W4281694696 endingPage "458" @default.
- W4281694696 startingPage "438" @default.
- W4281694696 abstract "The growing popularity of online social networks is obvious these days, and it provides researchers with an opportunity to find solutions for a variety of practical applications. The approach of recognizing network structure and finding missing and future links in a social network is known as link prediction. On time-varying or dynamic networks, the link prediction problem has two major challenges: accuracy and efficiency. The improvement of accuracy in link prediction problem in dynamic networks is the objective of this research. The goal of this paper is to propose the Path Weight Aggregation Feature ( P W A F ), which is a new feature based on ranking multi edge occurrences across the entire network. Different topological aspects of the networks ( L o c a l , G l o b a l , and Q u a s i − l o c a l ) as well as Clustering Coefficient based features are taken into consideration for feature generation, in addition to the suggested Path Weight-Based Aggregation Feature ( P W A F ). One of the features used for better prediction is the L e v e l − 2 node clustering coefficient ( C C L P 2 ). Different machine learning models, such as Neural Network ( N N ), Logistic Regression ( L R ), XGBoost ( X G B ), Random Forest Classifier ( R F C ), and linear Discriminant Analysis ( L D A ), are evaluated and verified for link prediction. The experiments are carried out on seven different well-known dynamic networks data sets in terms of five performance evaluation metrics , including AUPR, F1-score, AVG PRECISION, BAL ACC SCORE, and AUC, and the results show that our proposed method and its variants outperform state-of-the-art methods. The results demonstrate that P W A F − R F C is the best performing variation out of all machine learning classifiers we have experimented with. • We present a new feature called Path Weight-Based Aggregation Feature (PWAF), which is a new feature based on ranking multi edge occurrences across the entire network. • We generally use similarity indices, classified into four major categories — Local similarity, Global similarity, Quasi-local similarity, and Clustering coefficient based similarity to measure edge activity in individual snapshots. • One of the features used for better prediction is the Level-2 node clustering coefficient (CCLP2) • In order to give the best feasible solution to the link prediction problem, these individual features and their combinations were examined with five machine learning models. We have compared our results with three state-of-the-art methods on seven well known datasets. • We employed five performance matrices to compare the performance of our method to those of state-of-the-art approaches and found that our method outperformed all." @default.
- W4281694696 created "2022-06-13" @default.
- W4281694696 creator A5015586291 @default.
- W4281694696 creator A5038631503 @default.
- W4281694696 creator A5084923728 @default.
- W4281694696 date "2022-07-01" @default.
- W4281694696 modified "2023-09-27" @default.
- W4281694696 title "PWAF : Path Weight Aggregation Feature for link prediction in dynamic networks" @default.
- W4281694696 cites W114534726 @default.
- W4281694696 cites W1556758605 @default.
- W4281694696 cites W1564354600 @default.
- W4281694696 cites W1833321569 @default.
- W4281694696 cites W1966450090 @default.
- W4281694696 cites W1979104937 @default.
- W4281694696 cites W2007444087 @default.
- W4281694696 cites W2014596061 @default.
- W4281694696 cites W2031063730 @default.
- W4281694696 cites W2036281346 @default.
- W4281694696 cites W2039688703 @default.
- W4281694696 cites W2103306960 @default.
- W4281694696 cites W2130354913 @default.
- W4281694696 cites W2153896900 @default.
- W4281694696 cites W2157825442 @default.
- W4281694696 cites W2158698691 @default.
- W4281694696 cites W2158982637 @default.
- W4281694696 cites W2161984370 @default.
- W4281694696 cites W2290174960 @default.
- W4281694696 cites W2512447633 @default.
- W4281694696 cites W2564084673 @default.
- W4281694696 cites W2619573303 @default.
- W4281694696 cites W2650688300 @default.
- W4281694696 cites W2766847075 @default.
- W4281694696 cites W2768859421 @default.
- W4281694696 cites W2768961633 @default.
- W4281694696 cites W2772410093 @default.
- W4281694696 cites W2789728367 @default.
- W4281694696 cites W2791035291 @default.
- W4281694696 cites W2795483827 @default.
- W4281694696 cites W2804558096 @default.
- W4281694696 cites W2808549270 @default.
- W4281694696 cites W28412257 @default.
- W4281694696 cites W2899125647 @default.
- W4281694696 cites W2899778597 @default.
- W4281694696 cites W2908640594 @default.
- W4281694696 cites W2914914274 @default.
- W4281694696 cites W2950742983 @default.
- W4281694696 cites W2964126306 @default.
- W4281694696 cites W2969194307 @default.
- W4281694696 cites W2972205206 @default.
- W4281694696 cites W3004621088 @default.
- W4281694696 cites W3004732066 @default.
- W4281694696 cites W3026640598 @default.
- W4281694696 cites W3100447784 @default.
- W4281694696 cites W3101427803 @default.
- W4281694696 cites W3111962319 @default.
- W4281694696 cites W3185161717 @default.
- W4281694696 cites W3189431285 @default.
- W4281694696 cites W3204140782 @default.
- W4281694696 cites W3215742374 @default.
- W4281694696 cites W4211245372 @default.
- W4281694696 cites W4212883601 @default.
- W4281694696 cites W4220916858 @default.
- W4281694696 cites W4232932184 @default.
- W4281694696 cites W4238419557 @default.
- W4281694696 doi "https://doi.org/10.1016/j.comcom.2022.05.019" @default.
- W4281694696 hasPublicationYear "2022" @default.
- W4281694696 type Work @default.
- W4281694696 citedByCount "3" @default.
- W4281694696 countsByYear W42816946962022 @default.
- W4281694696 countsByYear W42816946962023 @default.
- W4281694696 crossrefType "journal-article" @default.
- W4281694696 hasAuthorship W4281694696A5015586291 @default.
- W4281694696 hasAuthorship W4281694696A5038631503 @default.
- W4281694696 hasAuthorship W4281694696A5084923728 @default.
- W4281694696 hasConcept C119857082 @default.
- W4281694696 hasConcept C124101348 @default.
- W4281694696 hasConcept C138885662 @default.
- W4281694696 hasConcept C154945302 @default.
- W4281694696 hasConcept C162307627 @default.
- W4281694696 hasConcept C189430467 @default.
- W4281694696 hasConcept C199360897 @default.
- W4281694696 hasConcept C22047676 @default.
- W4281694696 hasConcept C2776401178 @default.
- W4281694696 hasConcept C2777735758 @default.
- W4281694696 hasConcept C41008148 @default.
- W4281694696 hasConcept C41895202 @default.
- W4281694696 hasConcept C50644808 @default.
- W4281694696 hasConcept C69738355 @default.
- W4281694696 hasConcept C73555534 @default.
- W4281694696 hasConcept C95623464 @default.
- W4281694696 hasConceptScore W4281694696C119857082 @default.
- W4281694696 hasConceptScore W4281694696C124101348 @default.
- W4281694696 hasConceptScore W4281694696C138885662 @default.
- W4281694696 hasConceptScore W4281694696C154945302 @default.
- W4281694696 hasConceptScore W4281694696C162307627 @default.
- W4281694696 hasConceptScore W4281694696C189430467 @default.
- W4281694696 hasConceptScore W4281694696C199360897 @default.
- W4281694696 hasConceptScore W4281694696C22047676 @default.