Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281694844> ?p ?o ?g. }
- W4281694844 endingPage "9" @default.
- W4281694844 startingPage "1" @default.
- W4281694844 abstract "Traditional nondestructive testing technology for wood defects has a series of problems such as low identification accuracy, high cost, and cumbersome operation, and traditional testing methods cannot accurately show the specific location and size of wood internal defects; it is urgent to explore a new nondestructive testing scheme for wood defects. Aiming at this problem, this paper designs and develops an automatic detection method for wood surface defects based on deep learning algorithm and multicriteria framework. By comparing the performance of different deep learning detection methods on the data set, the advantages and disadvantages of the detection method in this paper are proved. After a series of works, such as the development and optimization of the experimental algorithm, the algorithm proposed meets the requirements in both the detection accuracy and training time." @default.
- W4281694844 created "2022-06-13" @default.
- W4281694844 creator A5035746776 @default.
- W4281694844 date "2022-05-26" @default.
- W4281694844 modified "2023-09-30" @default.
- W4281694844 title "Wood Quality Defect Detection Based on Deep Learning and Multicriteria Framework" @default.
- W4281694844 cites W1589935349 @default.
- W4281694844 cites W1965206844 @default.
- W4281694844 cites W2071274731 @default.
- W4281694844 cites W2093680491 @default.
- W4281694844 cites W2789384445 @default.
- W4281694844 cites W2895301365 @default.
- W4281694844 cites W2907362029 @default.
- W4281694844 cites W2919115771 @default.
- W4281694844 cites W3087439946 @default.
- W4281694844 cites W3099887400 @default.
- W4281694844 cites W3126236051 @default.
- W4281694844 cites W3129526466 @default.
- W4281694844 cites W3132648274 @default.
- W4281694844 cites W3136418972 @default.
- W4281694844 cites W3147922693 @default.
- W4281694844 cites W3156541193 @default.
- W4281694844 cites W3157105831 @default.
- W4281694844 cites W3173368102 @default.
- W4281694844 cites W3174126219 @default.
- W4281694844 cites W3177630534 @default.
- W4281694844 cites W3193637705 @default.
- W4281694844 cites W3195459965 @default.
- W4281694844 cites W3198411297 @default.
- W4281694844 cites W3199290796 @default.
- W4281694844 cites W3201769213 @default.
- W4281694844 cites W3210760437 @default.
- W4281694844 cites W3211951517 @default.
- W4281694844 cites W4213428772 @default.
- W4281694844 doi "https://doi.org/10.1155/2022/4878090" @default.
- W4281694844 hasPublicationYear "2022" @default.
- W4281694844 type Work @default.
- W4281694844 citedByCount "3" @default.
- W4281694844 countsByYear W42816948442022 @default.
- W4281694844 countsByYear W42816948442023 @default.
- W4281694844 crossrefType "journal-article" @default.
- W4281694844 hasAuthorship W4281694844A5035746776 @default.
- W4281694844 hasBestOaLocation W42816948441 @default.
- W4281694844 hasConcept C108583219 @default.
- W4281694844 hasConcept C111472728 @default.
- W4281694844 hasConcept C116834253 @default.
- W4281694844 hasConcept C119857082 @default.
- W4281694844 hasConcept C126838900 @default.
- W4281694844 hasConcept C134306372 @default.
- W4281694844 hasConcept C138885662 @default.
- W4281694844 hasConcept C143724316 @default.
- W4281694844 hasConcept C151730666 @default.
- W4281694844 hasConcept C154945302 @default.
- W4281694844 hasConcept C177264268 @default.
- W4281694844 hasConcept C199360897 @default.
- W4281694844 hasConcept C2779530757 @default.
- W4281694844 hasConcept C33923547 @default.
- W4281694844 hasConcept C41008148 @default.
- W4281694844 hasConcept C56529433 @default.
- W4281694844 hasConcept C59822182 @default.
- W4281694844 hasConcept C71924100 @default.
- W4281694844 hasConcept C77618280 @default.
- W4281694844 hasConcept C86803240 @default.
- W4281694844 hasConceptScore W4281694844C108583219 @default.
- W4281694844 hasConceptScore W4281694844C111472728 @default.
- W4281694844 hasConceptScore W4281694844C116834253 @default.
- W4281694844 hasConceptScore W4281694844C119857082 @default.
- W4281694844 hasConceptScore W4281694844C126838900 @default.
- W4281694844 hasConceptScore W4281694844C134306372 @default.
- W4281694844 hasConceptScore W4281694844C138885662 @default.
- W4281694844 hasConceptScore W4281694844C143724316 @default.
- W4281694844 hasConceptScore W4281694844C151730666 @default.
- W4281694844 hasConceptScore W4281694844C154945302 @default.
- W4281694844 hasConceptScore W4281694844C177264268 @default.
- W4281694844 hasConceptScore W4281694844C199360897 @default.
- W4281694844 hasConceptScore W4281694844C2779530757 @default.
- W4281694844 hasConceptScore W4281694844C33923547 @default.
- W4281694844 hasConceptScore W4281694844C41008148 @default.
- W4281694844 hasConceptScore W4281694844C56529433 @default.
- W4281694844 hasConceptScore W4281694844C59822182 @default.
- W4281694844 hasConceptScore W4281694844C71924100 @default.
- W4281694844 hasConceptScore W4281694844C77618280 @default.
- W4281694844 hasConceptScore W4281694844C86803240 @default.
- W4281694844 hasLocation W42816948441 @default.
- W4281694844 hasOpenAccess W4281694844 @default.
- W4281694844 hasPrimaryLocation W42816948441 @default.
- W4281694844 hasRelatedWork W2795261237 @default.
- W4281694844 hasRelatedWork W3014300295 @default.
- W4281694844 hasRelatedWork W3164822677 @default.
- W4281694844 hasRelatedWork W4223943233 @default.
- W4281694844 hasRelatedWork W4225161397 @default.
- W4281694844 hasRelatedWork W4312200629 @default.
- W4281694844 hasRelatedWork W4360585206 @default.
- W4281694844 hasRelatedWork W4364306694 @default.
- W4281694844 hasRelatedWork W4380075502 @default.
- W4281694844 hasRelatedWork W4380086463 @default.
- W4281694844 hasVolume "2022" @default.
- W4281694844 isParatext "false" @default.