Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281695133> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4281695133 endingPage "5203" @default.
- W4281695133 startingPage "5185" @default.
- W4281695133 abstract "Traditional machine learning-based pest classification methods are a tedious and time-consuming process A method of multi-class pest detection based on deep learning and convolutional neural networks could be the solution. It automatically extracts the complex features of different pests from the crop pest images. In this paper, various significant deep learning-based object detection models like SSD, EfficientDet, Faster R-CNN, and CenterNet are implemented based on the Tensorflow Object Detection framework. Several significant networks like MobileNet_V2, ResNet101_V1, Inception_ResNet_V2, EfficientNet, and HourGlass104 are employed as backbone networks for these models to extract the different features of the pests. Object detection models are capable of identifying and locating pests in crops. Initially, these models are pre-trained with the COCO dataset and later be fine-tuned to the target pest dataset of 20 different pest classes. After conducting experiments on these models using the pest dataset, we demonstrate that Faster R-CNN_ResNet101_V1 outperformed every other model and achieved mAP of 74.77%. Additionally, it is developed as a lightweight model, whose size is ∼9 MB, and can detect pest objects in 130 milliseconds per image, allowing it to be used on resources-constrained devices commonly used by farmers." @default.
- W4281695133 created "2022-06-13" @default.
- W4281695133 creator A5018635053 @default.
- W4281695133 creator A5074357938 @default.
- W4281695133 date "2022-08-10" @default.
- W4281695133 modified "2023-10-16" @default.
- W4281695133 title "Effective and efficient multi-crop pest detection based on deep learning object detection models" @default.
- W4281695133 cites W1861492603 @default.
- W4281695133 cites W2031489346 @default.
- W4281695133 cites W2117539524 @default.
- W4281695133 cites W2307770531 @default.
- W4281695133 cites W2890574476 @default.
- W4281695133 cites W2944599236 @default.
- W4281695133 cites W2944938209 @default.
- W4281695133 cites W2966160658 @default.
- W4281695133 cites W2968902559 @default.
- W4281695133 cites W2980351390 @default.
- W4281695133 cites W2982556035 @default.
- W4281695133 cites W2986631711 @default.
- W4281695133 cites W2989613844 @default.
- W4281695133 cites W2990057671 @default.
- W4281695133 cites W3017903670 @default.
- W4281695133 cites W3034325995 @default.
- W4281695133 cites W3044157086 @default.
- W4281695133 cites W3094146903 @default.
- W4281695133 cites W3097626038 @default.
- W4281695133 cites W3107702829 @default.
- W4281695133 cites W3107727158 @default.
- W4281695133 cites W3123622212 @default.
- W4281695133 cites W3128322927 @default.
- W4281695133 cites W3131606876 @default.
- W4281695133 cites W3164282918 @default.
- W4281695133 cites W3169587446 @default.
- W4281695133 doi "https://doi.org/10.3233/jifs-220595" @default.
- W4281695133 hasPublicationYear "2022" @default.
- W4281695133 type Work @default.
- W4281695133 citedByCount "6" @default.
- W4281695133 countsByYear W42816951332023 @default.
- W4281695133 crossrefType "journal-article" @default.
- W4281695133 hasAuthorship W4281695133A5018635053 @default.
- W4281695133 hasAuthorship W4281695133A5074357938 @default.
- W4281695133 hasConcept C108583219 @default.
- W4281695133 hasConcept C111919701 @default.
- W4281695133 hasConcept C119857082 @default.
- W4281695133 hasConcept C153180895 @default.
- W4281695133 hasConcept C154945302 @default.
- W4281695133 hasConcept C22508944 @default.
- W4281695133 hasConcept C2776151529 @default.
- W4281695133 hasConcept C2781238097 @default.
- W4281695133 hasConcept C41008148 @default.
- W4281695133 hasConcept C59822182 @default.
- W4281695133 hasConcept C81363708 @default.
- W4281695133 hasConcept C86803240 @default.
- W4281695133 hasConcept C98045186 @default.
- W4281695133 hasConceptScore W4281695133C108583219 @default.
- W4281695133 hasConceptScore W4281695133C111919701 @default.
- W4281695133 hasConceptScore W4281695133C119857082 @default.
- W4281695133 hasConceptScore W4281695133C153180895 @default.
- W4281695133 hasConceptScore W4281695133C154945302 @default.
- W4281695133 hasConceptScore W4281695133C22508944 @default.
- W4281695133 hasConceptScore W4281695133C2776151529 @default.
- W4281695133 hasConceptScore W4281695133C2781238097 @default.
- W4281695133 hasConceptScore W4281695133C41008148 @default.
- W4281695133 hasConceptScore W4281695133C59822182 @default.
- W4281695133 hasConceptScore W4281695133C81363708 @default.
- W4281695133 hasConceptScore W4281695133C86803240 @default.
- W4281695133 hasConceptScore W4281695133C98045186 @default.
- W4281695133 hasIssue "4" @default.
- W4281695133 hasLocation W42816951331 @default.
- W4281695133 hasOpenAccess W4281695133 @default.
- W4281695133 hasPrimaryLocation W42816951331 @default.
- W4281695133 hasRelatedWork W2731899572 @default.
- W4281695133 hasRelatedWork W2801801420 @default.
- W4281695133 hasRelatedWork W2970686063 @default.
- W4281695133 hasRelatedWork W2999805992 @default.
- W4281695133 hasRelatedWork W3116150086 @default.
- W4281695133 hasRelatedWork W3133861977 @default.
- W4281695133 hasRelatedWork W4200173597 @default.
- W4281695133 hasRelatedWork W4311401716 @default.
- W4281695133 hasRelatedWork W4312417841 @default.
- W4281695133 hasRelatedWork W4321369474 @default.
- W4281695133 hasVolume "43" @default.
- W4281695133 isParatext "false" @default.
- W4281695133 isRetracted "false" @default.
- W4281695133 workType "article" @default.