Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281704789> ?p ?o ?g. }
- W4281704789 endingPage "2202470" @default.
- W4281704789 startingPage "2202470" @default.
- W4281704789 abstract "3D-printed polycaprolactone (PCL) scaffolds have been extensively studied for application in bone tissue engineering. However, PCL-based scaffolds with enhanced bioactivity and intelligent delivery capability for bone repair remains challenging. Herein, CuS nanoparticle-PEG soft hydrogel-coated 3D hard polycaprolactone scaffolds (denoted as CuS-PEG-PCL scaffold) are rationally designed for efficient bone regeneration. CuS nanoparticles cross-linked PEG hydrogel (CuS-PEG-hydrogel) endows the PCL-based scaffold with excellent photothermal properties and stable soft elasticity, while the PCL scaffold provides excellent mechanical performance. Upon exposure to 1064 nm near-infrared (NIR) light irradiation, dexamethasone sodium phosphate (Dexp), stored in the CuS-PEG-PCL scaffold, can be controllably released, which efficiently promotes osteogenic differentiation of bone mesenchymal stem cells (BMSCs). In addition, the combination of mild heating at 42 ± 0.5 °C further promoted osteogenic differentiation of BMSCs. Subsequently, this Dexp-loaded CuS-PEG-PCL scaffold (D-CuS-PEG-PCL scaffold) with NIR light treatment at the tibial defect of rats presented the highest bone regeneration capacity. These findings demonstrate that the Dexp-loaded CuS-PEG-hydrogel can effectively modify the 3D printed PCL scaffold. Therefore, this multifunctional scaffold with a soft-hard hybrid structure has the potential to become an advanced drug delivery vehicle in the treatment of large bone defects." @default.
- W4281704789 created "2022-06-13" @default.
- W4281704789 creator A5003505642 @default.
- W4281704789 creator A5010820215 @default.
- W4281704789 creator A5019708503 @default.
- W4281704789 creator A5022116113 @default.
- W4281704789 creator A5022727895 @default.
- W4281704789 creator A5034654778 @default.
- W4281704789 creator A5041858499 @default.
- W4281704789 creator A5049341927 @default.
- W4281704789 creator A5059736907 @default.
- W4281704789 creator A5069460833 @default.
- W4281704789 creator A5079988671 @default.
- W4281704789 creator A5083304846 @default.
- W4281704789 creator A5084480888 @default.
- W4281704789 date "2022-06-03" @default.
- W4281704789 modified "2023-10-15" @default.
- W4281704789 title "Rational Design of Multifunctional CuS Nanoparticle‐PEG Composite Soft Hydrogel‐Coated 3D Hard Polycaprolactone Scaffolds for Efficient Bone Regeneration" @default.
- W4281704789 cites W1509760969 @default.
- W4281704789 cites W1993045615 @default.
- W4281704789 cites W2073765250 @default.
- W4281704789 cites W2080790182 @default.
- W4281704789 cites W2083990407 @default.
- W4281704789 cites W2105796793 @default.
- W4281704789 cites W2114035952 @default.
- W4281704789 cites W2153558871 @default.
- W4281704789 cites W2322562148 @default.
- W4281704789 cites W2480219688 @default.
- W4281704789 cites W2579652888 @default.
- W4281704789 cites W2587360484 @default.
- W4281704789 cites W2590915628 @default.
- W4281704789 cites W2594517351 @default.
- W4281704789 cites W2773668590 @default.
- W4281704789 cites W2779597339 @default.
- W4281704789 cites W2781541164 @default.
- W4281704789 cites W2783339065 @default.
- W4281704789 cites W2801420552 @default.
- W4281704789 cites W2803598967 @default.
- W4281704789 cites W2804599654 @default.
- W4281704789 cites W286204498 @default.
- W4281704789 cites W2896918073 @default.
- W4281704789 cites W2901097670 @default.
- W4281704789 cites W2902132599 @default.
- W4281704789 cites W2903740926 @default.
- W4281704789 cites W2904045667 @default.
- W4281704789 cites W2907594102 @default.
- W4281704789 cites W2915061266 @default.
- W4281704789 cites W2958351825 @default.
- W4281704789 cites W2960509287 @default.
- W4281704789 cites W2960558416 @default.
- W4281704789 cites W2968225577 @default.
- W4281704789 cites W2971910448 @default.
- W4281704789 cites W2972629861 @default.
- W4281704789 cites W2983982331 @default.
- W4281704789 cites W2986546735 @default.
- W4281704789 cites W2994778858 @default.
- W4281704789 cites W2999394152 @default.
- W4281704789 cites W2999518555 @default.
- W4281704789 cites W3005813900 @default.
- W4281704789 cites W3006629407 @default.
- W4281704789 cites W3007326710 @default.
- W4281704789 cites W3008008334 @default.
- W4281704789 cites W3008425067 @default.
- W4281704789 cites W3015781843 @default.
- W4281704789 cites W3025542308 @default.
- W4281704789 cites W3043836601 @default.
- W4281704789 cites W3045581774 @default.
- W4281704789 cites W3082213210 @default.
- W4281704789 cites W3087185081 @default.
- W4281704789 cites W3092346227 @default.
- W4281704789 cites W3094490330 @default.
- W4281704789 cites W3109484330 @default.
- W4281704789 cites W3109656128 @default.
- W4281704789 cites W3131034435 @default.
- W4281704789 cites W3134402938 @default.
- W4281704789 cites W3155020406 @default.
- W4281704789 cites W3158160838 @default.
- W4281704789 cites W3159119403 @default.
- W4281704789 cites W3165866294 @default.
- W4281704789 cites W3175063399 @default.
- W4281704789 cites W3176290988 @default.
- W4281704789 cites W3195702463 @default.
- W4281704789 cites W3206759704 @default.
- W4281704789 cites W3209162906 @default.
- W4281704789 cites W4205089976 @default.
- W4281704789 cites W4206358653 @default.
- W4281704789 cites W4210259501 @default.
- W4281704789 cites W4213365620 @default.
- W4281704789 cites W4214748463 @default.
- W4281704789 cites W4225516217 @default.
- W4281704789 doi "https://doi.org/10.1002/adfm.202202470" @default.
- W4281704789 hasPublicationYear "2022" @default.
- W4281704789 type Work @default.
- W4281704789 citedByCount "41" @default.
- W4281704789 countsByYear W42817047892022 @default.
- W4281704789 countsByYear W42817047892023 @default.
- W4281704789 crossrefType "journal-article" @default.
- W4281704789 hasAuthorship W4281704789A5003505642 @default.