Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281705672> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4281705672 endingPage "109204" @default.
- W4281705672 startingPage "109204" @default.
- W4281705672 abstract "Session-based recommendation (SBR) is a challenging task, aiming at recommending items according to the behavior of anonymous users. Previous research efforts mainly focus on capturing sequential transitions between consecutive items via recurrent neural networks (RNN) or modeling the complex transitions between non-adjacent items based on graph neural networks (GNN). Although these works have achieved encouraging performance on solving the session-based recommendation problem, few efforts have been dedicated to exploring the rich information related to the shifts of user interests within the transition relationships, which is the research gap we attempt to bridge in this work. In this paper, we propose a novel model, named Time Enhanced Graph Neural Networks (TE-GNN), which attempts to capture the complex user interest shift patterns within sessions. In TE-GNN, we construct a Time Enhanced Session Graph (TES-Graph) where transition relationships between items are treated adaptively with respect to the degree of user interest drift. In addition, a novel Temporal Graph Convolutional Network (T-GCN) is designed to learn item embeddings based on the TES-Graph. Moreover, we also introduce a Temporal Interest Attention Network (TIAN) to model the complex transition of items with a common user interest. Extensive experiments have been conducted on four widely used benchmark datasets, i.e., Diginetica, Tmall, Nowplaying, and Retailrocket, and the results show that our proposed approach TE-GNN significantly outperforms previous state-of-the-art baseline methods. The implementation of TE-GNN is available in https://github.com/GuTang1997/TE-GNN ." @default.
- W4281705672 created "2022-06-13" @default.
- W4281705672 creator A5021268896 @default.
- W4281705672 creator A5070728314 @default.
- W4281705672 creator A5077755385 @default.
- W4281705672 creator A5088621320 @default.
- W4281705672 date "2022-09-01" @default.
- W4281705672 modified "2023-10-14" @default.
- W4281705672 title "Time enhanced graph neural networks for session-based recommendation" @default.
- W4281705672 cites W1985854669 @default.
- W4281705672 cites W2000562880 @default.
- W4281705672 cites W2042281163 @default.
- W4281705672 cites W2053552153 @default.
- W4281705672 cites W2116341502 @default.
- W4281705672 cites W2157331557 @default.
- W4281705672 cites W2171279286 @default.
- W4281705672 cites W2605350416 @default.
- W4281705672 cites W2626454364 @default.
- W4281705672 cites W2809307135 @default.
- W4281705672 cites W2949274928 @default.
- W4281705672 cites W2953586472 @default.
- W4281705672 cites W2963367478 @default.
- W4281705672 cites W2964044287 @default.
- W4281705672 cites W2965919199 @default.
- W4281705672 cites W2998167534 @default.
- W4281705672 cites W3033659671 @default.
- W4281705672 cites W3035053861 @default.
- W4281705672 cites W3045200674 @default.
- W4281705672 cites W3093800735 @default.
- W4281705672 cites W3097072019 @default.
- W4281705672 cites W3101707147 @default.
- W4281705672 cites W3106433415 @default.
- W4281705672 cites W3166827814 @default.
- W4281705672 cites W3176074827 @default.
- W4281705672 cites W3189256423 @default.
- W4281705672 cites W3193116232 @default.
- W4281705672 cites W3193978390 @default.
- W4281705672 cites W4224230118 @default.
- W4281705672 cites W4226272098 @default.
- W4281705672 doi "https://doi.org/10.1016/j.knosys.2022.109204" @default.
- W4281705672 hasPublicationYear "2022" @default.
- W4281705672 type Work @default.
- W4281705672 citedByCount "2" @default.
- W4281705672 countsByYear W42817056722023 @default.
- W4281705672 crossrefType "journal-article" @default.
- W4281705672 hasAuthorship W4281705672A5021268896 @default.
- W4281705672 hasAuthorship W4281705672A5070728314 @default.
- W4281705672 hasAuthorship W4281705672A5077755385 @default.
- W4281705672 hasAuthorship W4281705672A5088621320 @default.
- W4281705672 hasConcept C132525143 @default.
- W4281705672 hasConcept C136764020 @default.
- W4281705672 hasConcept C154945302 @default.
- W4281705672 hasConcept C2779182362 @default.
- W4281705672 hasConcept C41008148 @default.
- W4281705672 hasConcept C50644808 @default.
- W4281705672 hasConcept C80444323 @default.
- W4281705672 hasConceptScore W4281705672C132525143 @default.
- W4281705672 hasConceptScore W4281705672C136764020 @default.
- W4281705672 hasConceptScore W4281705672C154945302 @default.
- W4281705672 hasConceptScore W4281705672C2779182362 @default.
- W4281705672 hasConceptScore W4281705672C41008148 @default.
- W4281705672 hasConceptScore W4281705672C50644808 @default.
- W4281705672 hasConceptScore W4281705672C80444323 @default.
- W4281705672 hasFunder F4320321001 @default.
- W4281705672 hasFunder F4320321114 @default.
- W4281705672 hasFunder F4320323015 @default.
- W4281705672 hasLocation W42817056721 @default.
- W4281705672 hasOpenAccess W4281705672 @default.
- W4281705672 hasPrimaryLocation W42817056721 @default.
- W4281705672 hasRelatedWork W2748952813 @default.
- W4281705672 hasRelatedWork W2899084033 @default.
- W4281705672 hasRelatedWork W3012257603 @default.
- W4281705672 hasRelatedWork W3138244192 @default.
- W4281705672 hasRelatedWork W3177475962 @default.
- W4281705672 hasRelatedWork W4230197055 @default.
- W4281705672 hasRelatedWork W4292264782 @default.
- W4281705672 hasRelatedWork W4296749040 @default.
- W4281705672 hasRelatedWork W621808327 @default.
- W4281705672 hasRelatedWork W644007644 @default.
- W4281705672 hasVolume "251" @default.
- W4281705672 isParatext "false" @default.
- W4281705672 isRetracted "false" @default.
- W4281705672 workType "article" @default.