Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281707036> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4281707036 endingPage "104596" @default.
- W4281707036 startingPage "104596" @default.
- W4281707036 abstract "The fractional distillation process of methyl chlorosilanes composed of multiple distillation units plays a vital role in the silicones industry. It consumes energy intensively because of the high demand for separating capacity. Therefore, it is crucial to establish the energy consumption models for better forecasting. A multi-task learning approach is presented in this paper to improve the model accuracy for each unit while saving the modeling cost. Firstly, the simplified white-box model of each distillation unit is established according to the heat and material balance. Then, the multi-task least square support vector machine algorithm is proposed to identify the model parameters by employing the similarity between multiple distillation units. Finally, the actual industrial data is used in the simulation section to verify the validity, practicability, and advantages of the multi-task models over single-task ones. It shows that the proposed models can enhance the understanding of the distillation process significantly and forecast the energy consumption more accurately than the existing single-task models." @default.
- W4281707036 created "2022-06-13" @default.
- W4281707036 creator A5003558647 @default.
- W4281707036 creator A5007377543 @default.
- W4281707036 creator A5023417619 @default.
- W4281707036 creator A5048279362 @default.
- W4281707036 date "2022-07-01" @default.
- W4281707036 modified "2023-10-09" @default.
- W4281707036 title "Multi-task learning for energy consumption forecasting of methyl chlorosilanes fractional distillation process" @default.
- W4281707036 cites W1977210337 @default.
- W4281707036 cites W1981220107 @default.
- W4281707036 cites W1988101164 @default.
- W4281707036 cites W2018637490 @default.
- W4281707036 cites W2030540083 @default.
- W4281707036 cites W2045477689 @default.
- W4281707036 cites W2080917896 @default.
- W4281707036 cites W2085661620 @default.
- W4281707036 cites W2086874760 @default.
- W4281707036 cites W2133491790 @default.
- W4281707036 cites W2335781652 @default.
- W4281707036 cites W2573137292 @default.
- W4281707036 cites W2606854773 @default.
- W4281707036 cites W2620993523 @default.
- W4281707036 cites W2780666316 @default.
- W4281707036 cites W2885441463 @default.
- W4281707036 cites W2981508338 @default.
- W4281707036 cites W3096392385 @default.
- W4281707036 cites W3124552578 @default.
- W4281707036 cites W3154504804 @default.
- W4281707036 cites W3163885119 @default.
- W4281707036 cites W3196509389 @default.
- W4281707036 cites W3197860570 @default.
- W4281707036 doi "https://doi.org/10.1016/j.chemolab.2022.104596" @default.
- W4281707036 hasPublicationYear "2022" @default.
- W4281707036 type Work @default.
- W4281707036 citedByCount "3" @default.
- W4281707036 countsByYear W42817070362023 @default.
- W4281707036 crossrefType "journal-article" @default.
- W4281707036 hasAuthorship W4281707036A5003558647 @default.
- W4281707036 hasAuthorship W4281707036A5007377543 @default.
- W4281707036 hasAuthorship W4281707036A5023417619 @default.
- W4281707036 hasAuthorship W4281707036A5048279362 @default.
- W4281707036 hasConcept C105795698 @default.
- W4281707036 hasConcept C111919701 @default.
- W4281707036 hasConcept C119599485 @default.
- W4281707036 hasConcept C127413603 @default.
- W4281707036 hasConcept C178790620 @default.
- W4281707036 hasConcept C185592680 @default.
- W4281707036 hasConcept C186370098 @default.
- W4281707036 hasConcept C201995342 @default.
- W4281707036 hasConcept C204030448 @default.
- W4281707036 hasConcept C21880701 @default.
- W4281707036 hasConcept C2780165032 @default.
- W4281707036 hasConcept C2780451532 @default.
- W4281707036 hasConcept C33923547 @default.
- W4281707036 hasConcept C41008148 @default.
- W4281707036 hasConcept C98045186 @default.
- W4281707036 hasConceptScore W4281707036C105795698 @default.
- W4281707036 hasConceptScore W4281707036C111919701 @default.
- W4281707036 hasConceptScore W4281707036C119599485 @default.
- W4281707036 hasConceptScore W4281707036C127413603 @default.
- W4281707036 hasConceptScore W4281707036C178790620 @default.
- W4281707036 hasConceptScore W4281707036C185592680 @default.
- W4281707036 hasConceptScore W4281707036C186370098 @default.
- W4281707036 hasConceptScore W4281707036C201995342 @default.
- W4281707036 hasConceptScore W4281707036C204030448 @default.
- W4281707036 hasConceptScore W4281707036C21880701 @default.
- W4281707036 hasConceptScore W4281707036C2780165032 @default.
- W4281707036 hasConceptScore W4281707036C2780451532 @default.
- W4281707036 hasConceptScore W4281707036C33923547 @default.
- W4281707036 hasConceptScore W4281707036C41008148 @default.
- W4281707036 hasConceptScore W4281707036C98045186 @default.
- W4281707036 hasFunder F4320321001 @default.
- W4281707036 hasLocation W42817070361 @default.
- W4281707036 hasOpenAccess W4281707036 @default.
- W4281707036 hasPrimaryLocation W42817070361 @default.
- W4281707036 hasRelatedWork W2006342414 @default.
- W4281707036 hasRelatedWork W2055842103 @default.
- W4281707036 hasRelatedWork W2072862869 @default.
- W4281707036 hasRelatedWork W2358887989 @default.
- W4281707036 hasRelatedWork W2365077924 @default.
- W4281707036 hasRelatedWork W2367989554 @default.
- W4281707036 hasRelatedWork W2386606405 @default.
- W4281707036 hasRelatedWork W2599766002 @default.
- W4281707036 hasRelatedWork W2899726612 @default.
- W4281707036 hasRelatedWork W2937192525 @default.
- W4281707036 hasVolume "226" @default.
- W4281707036 isParatext "false" @default.
- W4281707036 isRetracted "false" @default.
- W4281707036 workType "article" @default.