Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281707042> ?p ?o ?g. }
- W4281707042 endingPage "17" @default.
- W4281707042 startingPage "1" @default.
- W4281707042 abstract "This study introduces textit{Landslide4Sense}, a reference benchmark for landslide detection from remote sensing. The repository features 3,799 image patches fusing optical layers from Sentinel-2 sensors with the digital elevation model and slope layer derived from ALOS PALSAR. The added topographical information facilitates the accurate detection of landslide borders, which recent researches have shown to be challenging using optical data alone. The extensive data set supports deep learning (DL) studies in landslide detection and the development and validation of methods for the systematic update of landslide inventories. The benchmark data set has been collected at four different times and geographical locations: Iburi (September 2018), Kodagu (August 2018), Gorkha (April 2015), and Taiwan (August 2009). Each image pixel is labelled as belonging to a landslide or not, incorporating various sources and thorough manual annotation. We then evaluate the landslide detection performance of 11 state-of-the-art DL segmentation models: U-Net, ResU-Net, PSPNet, ContextNet, DeepLab-v2, DeepLab-v3+, FCN-8s, LinkNet, FRRN-A, FRRN-B, and SQNet. All models were trained from scratch on patches from one quarter of each study area and tested on independent patches from the other three quarters. Our experiments demonstrate that ResU-Net outperformed the other models for the landslide detection task. We make the multi-source landslide benchmark data (Landslide4Sense) and the tested DL models publicly available at url{https://www.iarai.ac.at/landslide4sense}, establishing an important resource for remote sensing, computer vision, and machine learning communities in studies of image classification in general and applications to landslide detection in particular." @default.
- W4281707042 created "2022-06-13" @default.
- W4281707042 creator A5026502466 @default.
- W4281707042 creator A5066221961 @default.
- W4281707042 creator A5068885379 @default.
- W4281707042 creator A5076046328 @default.
- W4281707042 creator A5089503857 @default.
- W4281707042 date "2022-01-01" @default.
- W4281707042 modified "2023-10-03" @default.
- W4281707042 title "Landslide4Sense: Reference Benchmark Data and Deep Learning Models for Landslide Detection" @default.
- W4281707042 cites W1903029394 @default.
- W4281707042 cites W1968128178 @default.
- W4281707042 cites W1984792953 @default.
- W4281707042 cites W1988650824 @default.
- W4281707042 cites W2056435747 @default.
- W4281707042 cites W2058082754 @default.
- W4281707042 cites W2077338460 @default.
- W4281707042 cites W2095057310 @default.
- W4281707042 cites W2125758830 @default.
- W4281707042 cites W2194775991 @default.
- W4281707042 cites W2277932823 @default.
- W4281707042 cites W2288228418 @default.
- W4281707042 cites W2412782625 @default.
- W4281707042 cites W2509507403 @default.
- W4281707042 cites W2531388560 @default.
- W4281707042 cites W2557406251 @default.
- W4281707042 cites W2560023338 @default.
- W4281707042 cites W2587598231 @default.
- W4281707042 cites W2588237346 @default.
- W4281707042 cites W2620692085 @default.
- W4281707042 cites W2624145307 @default.
- W4281707042 cites W2753093605 @default.
- W4281707042 cites W2773519736 @default.
- W4281707042 cites W2774320778 @default.
- W4281707042 cites W2782522152 @default.
- W4281707042 cites W2898749557 @default.
- W4281707042 cites W2899725189 @default.
- W4281707042 cites W2908624219 @default.
- W4281707042 cites W2912361013 @default.
- W4281707042 cites W2951859248 @default.
- W4281707042 cites W2963289561 @default.
- W4281707042 cites W2968993450 @default.
- W4281707042 cites W2970904865 @default.
- W4281707042 cites W2984248680 @default.
- W4281707042 cites W2990986966 @default.
- W4281707042 cites W3001525167 @default.
- W4281707042 cites W3003657101 @default.
- W4281707042 cites W3004997737 @default.
- W4281707042 cites W3010846872 @default.
- W4281707042 cites W3011692993 @default.
- W4281707042 cites W3012377709 @default.
- W4281707042 cites W3043400139 @default.
- W4281707042 cites W3047392236 @default.
- W4281707042 cites W3081064176 @default.
- W4281707042 cites W3082129780 @default.
- W4281707042 cites W3083587759 @default.
- W4281707042 cites W3091852895 @default.
- W4281707042 cites W3097387309 @default.
- W4281707042 cites W3104282073 @default.
- W4281707042 cites W3105636206 @default.
- W4281707042 cites W3111915298 @default.
- W4281707042 cites W3115872824 @default.
- W4281707042 cites W3120526585 @default.
- W4281707042 cites W3122468932 @default.
- W4281707042 cites W3135903521 @default.
- W4281707042 cites W3156421991 @default.
- W4281707042 cites W3158723639 @default.
- W4281707042 cites W3177578841 @default.
- W4281707042 cites W3180107394 @default.
- W4281707042 cites W3185453342 @default.
- W4281707042 cites W3192465173 @default.
- W4281707042 cites W3194808133 @default.
- W4281707042 cites W3203344601 @default.
- W4281707042 cites W3207915542 @default.
- W4281707042 cites W3209169151 @default.
- W4281707042 cites W3212570739 @default.
- W4281707042 cites W3213053480 @default.
- W4281707042 cites W3216446284 @default.
- W4281707042 cites W4205319111 @default.
- W4281707042 cites W4205425966 @default.
- W4281707042 cites W4210766921 @default.
- W4281707042 cites W4211177084 @default.
- W4281707042 cites W4213266882 @default.
- W4281707042 cites W4280630994 @default.
- W4281707042 doi "https://doi.org/10.1109/tgrs.2022.3215209" @default.
- W4281707042 hasPublicationYear "2022" @default.
- W4281707042 type Work @default.
- W4281707042 citedByCount "21" @default.
- W4281707042 countsByYear W42817070422022 @default.
- W4281707042 countsByYear W42817070422023 @default.
- W4281707042 crossrefType "journal-article" @default.
- W4281707042 hasAuthorship W4281707042A5026502466 @default.
- W4281707042 hasAuthorship W4281707042A5066221961 @default.
- W4281707042 hasAuthorship W4281707042A5068885379 @default.
- W4281707042 hasAuthorship W4281707042A5076046328 @default.
- W4281707042 hasAuthorship W4281707042A5089503857 @default.
- W4281707042 hasBestOaLocation W42817070422 @default.
- W4281707042 hasConcept C119857082 @default.