Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281714265> ?p ?o ?g. }
- W4281714265 endingPage "1848" @default.
- W4281714265 startingPage "1848" @default.
- W4281714265 abstract "A substantial amount of money and time is required to optimize resources in a massive Wi-Fi network in a real-world environment. Therefore, to reduce cost, proposed algorithms are first verified through simulations before implementing them in a real-world environment. A traffic model is essential to describe user traffic for simulations. Existing traffic models are statistical models based on a discrete-time random process and combine a spatiotemporal characteristic model with the varying parameters, such as average and variance, of a statistical model. The spatiotemporal characteristic model has a mathematically strict assumption that the access points (APs) have approximately similar traffic patterns that increase during day times and decrease at night. The mathematical assumption ensures a homogeneous representation of the network traffic. It does not include heterogeneous characteristics, such as the fact that lecture buildings on campus have a high traffic during lectures, while restaurants have a high traffic only during mealtimes. Therefore, it is difficult to represent heterogeneous traffic using this mathematical model. Deep learning can be used to represent heterogeneous patterns. This study proposes a generative model for Wi-Fi traffic that considers spatiotemporal characteristics using deep learning. The proposed model learns the heterogeneous traffic patterns from the AP-level measurement data without any assumptions and generates similar traffic patterns based on the data. The result shows that the difference between the sample generated by the proposed model and the collected data is up to 72.1% less than that reported in previous studies." @default.
- W4281714265 created "2022-06-13" @default.
- W4281714265 creator A5047442992 @default.
- W4281714265 creator A5062620240 @default.
- W4281714265 date "2022-06-10" @default.
- W4281714265 modified "2023-09-30" @default.
- W4281714265 title "A Generative Model for Traffic Demand with Heterogeneous and Spatiotemporal Characteristics in Massive Wi-Fi Systems" @default.
- W4281714265 cites W1986620394 @default.
- W4281714265 cites W2043616555 @default.
- W4281714265 cites W2071199570 @default.
- W4281714265 cites W2103853386 @default.
- W4281714265 cites W2136848157 @default.
- W4281714265 cites W2143557214 @default.
- W4281714265 cites W2754237425 @default.
- W4281714265 cites W2762605243 @default.
- W4281714265 cites W2767289262 @default.
- W4281714265 cites W2794209590 @default.
- W4281714265 cites W2799789854 @default.
- W4281714265 cites W2807536558 @default.
- W4281714265 cites W2886938859 @default.
- W4281714265 cites W2890072063 @default.
- W4281714265 cites W2897256107 @default.
- W4281714265 cites W2902290465 @default.
- W4281714265 cites W2902656518 @default.
- W4281714265 cites W2902753153 @default.
- W4281714265 cites W2907637692 @default.
- W4281714265 cites W2919115771 @default.
- W4281714265 cites W2921319277 @default.
- W4281714265 cites W2952530542 @default.
- W4281714265 cites W2963035276 @default.
- W4281714265 cites W2985331920 @default.
- W4281714265 cites W3033902456 @default.
- W4281714265 cites W3080207626 @default.
- W4281714265 cites W3081964860 @default.
- W4281714265 cites W3082935815 @default.
- W4281714265 cites W3106379731 @default.
- W4281714265 cites W3123788679 @default.
- W4281714265 cites W3197902908 @default.
- W4281714265 cites W4210918441 @default.
- W4281714265 doi "https://doi.org/10.3390/electronics11121848" @default.
- W4281714265 hasPublicationYear "2022" @default.
- W4281714265 type Work @default.
- W4281714265 citedByCount "1" @default.
- W4281714265 countsByYear W42817142652023 @default.
- W4281714265 crossrefType "journal-article" @default.
- W4281714265 hasAuthorship W4281714265A5047442992 @default.
- W4281714265 hasAuthorship W4281714265A5062620240 @default.
- W4281714265 hasBestOaLocation W42817142651 @default.
- W4281714265 hasConcept C108037233 @default.
- W4281714265 hasConcept C111919701 @default.
- W4281714265 hasConcept C114614502 @default.
- W4281714265 hasConcept C121955636 @default.
- W4281714265 hasConcept C124101348 @default.
- W4281714265 hasConcept C144133560 @default.
- W4281714265 hasConcept C154945302 @default.
- W4281714265 hasConcept C158207573 @default.
- W4281714265 hasConcept C167966045 @default.
- W4281714265 hasConcept C176715033 @default.
- W4281714265 hasConcept C17744445 @default.
- W4281714265 hasConcept C185592680 @default.
- W4281714265 hasConcept C196083921 @default.
- W4281714265 hasConcept C198531522 @default.
- W4281714265 hasConcept C199539241 @default.
- W4281714265 hasConcept C2776359362 @default.
- W4281714265 hasConcept C33923547 @default.
- W4281714265 hasConcept C39890363 @default.
- W4281714265 hasConcept C41008148 @default.
- W4281714265 hasConcept C43617362 @default.
- W4281714265 hasConcept C555944384 @default.
- W4281714265 hasConcept C66882249 @default.
- W4281714265 hasConcept C76155785 @default.
- W4281714265 hasConcept C79403827 @default.
- W4281714265 hasConcept C94625758 @default.
- W4281714265 hasConcept C98045186 @default.
- W4281714265 hasConceptScore W4281714265C108037233 @default.
- W4281714265 hasConceptScore W4281714265C111919701 @default.
- W4281714265 hasConceptScore W4281714265C114614502 @default.
- W4281714265 hasConceptScore W4281714265C121955636 @default.
- W4281714265 hasConceptScore W4281714265C124101348 @default.
- W4281714265 hasConceptScore W4281714265C144133560 @default.
- W4281714265 hasConceptScore W4281714265C154945302 @default.
- W4281714265 hasConceptScore W4281714265C158207573 @default.
- W4281714265 hasConceptScore W4281714265C167966045 @default.
- W4281714265 hasConceptScore W4281714265C176715033 @default.
- W4281714265 hasConceptScore W4281714265C17744445 @default.
- W4281714265 hasConceptScore W4281714265C185592680 @default.
- W4281714265 hasConceptScore W4281714265C196083921 @default.
- W4281714265 hasConceptScore W4281714265C198531522 @default.
- W4281714265 hasConceptScore W4281714265C199539241 @default.
- W4281714265 hasConceptScore W4281714265C2776359362 @default.
- W4281714265 hasConceptScore W4281714265C33923547 @default.
- W4281714265 hasConceptScore W4281714265C39890363 @default.
- W4281714265 hasConceptScore W4281714265C41008148 @default.
- W4281714265 hasConceptScore W4281714265C43617362 @default.
- W4281714265 hasConceptScore W4281714265C555944384 @default.
- W4281714265 hasConceptScore W4281714265C66882249 @default.
- W4281714265 hasConceptScore W4281714265C76155785 @default.
- W4281714265 hasConceptScore W4281714265C79403827 @default.