Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281714913> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4281714913 endingPage "5872" @default.
- W4281714913 startingPage "5872" @default.
- W4281714913 abstract "Adaptive boost (AdaBoost) is a prominent example of an ensemble learning algorithm that combines weak classifiers into strong classifiers through weighted majority voting rules. AdaBoost’s weak classifier, with threshold classification, tries to find the best threshold in one of the data dimensions, dividing the data into two categories-1 and 1. However, in some cases, this Weak Learning algorithm is not accurate enough, showing poor generalization performance and a tendency to over-fit. To solve these challenges, we first propose a new Weak Learning algorithm that classifies examples based on multiple thresholds, rather than only one, to improve its accuracy. Second, in this paper, we make changes to the weight allocation scheme of the Weak Learning algorithm based on the AdaBoost algorithm to use potential values of other dimensions in the classification process, while the theoretical identification is provided to show its generality. Finally, comparative experiments between the two algorithms on 18 datasets on UCI show that our improved AdaBoost algorithm has a better generalization effect in the test set during the training iteration." @default.
- W4281714913 created "2022-06-13" @default.
- W4281714913 creator A5003335763 @default.
- W4281714913 creator A5022181517 @default.
- W4281714913 creator A5048005515 @default.
- W4281714913 creator A5089048885 @default.
- W4281714913 date "2022-06-09" @default.
- W4281714913 modified "2023-10-01" @default.
- W4281714913 title "An Efficient AdaBoost Algorithm with the Multiple Thresholds Classification" @default.
- W4281714913 cites W1864224110 @default.
- W4281714913 cites W1966093936 @default.
- W4281714913 cites W1975226518 @default.
- W4281714913 cites W1988790447 @default.
- W4281714913 cites W1990158361 @default.
- W4281714913 cites W2024046085 @default.
- W4281714913 cites W2037505508 @default.
- W4281714913 cites W2067407532 @default.
- W4281714913 cites W2152761983 @default.
- W4281714913 cites W2794884336 @default.
- W4281714913 cites W2997080176 @default.
- W4281714913 cites W3014666486 @default.
- W4281714913 cites W3017365251 @default.
- W4281714913 cites W3048836559 @default.
- W4281714913 cites W3129039771 @default.
- W4281714913 cites W3144804712 @default.
- W4281714913 cites W3151640016 @default.
- W4281714913 cites W4205943930 @default.
- W4281714913 cites W4206060259 @default.
- W4281714913 cites W4244952642 @default.
- W4281714913 doi "https://doi.org/10.3390/app12125872" @default.
- W4281714913 hasPublicationYear "2022" @default.
- W4281714913 type Work @default.
- W4281714913 citedByCount "4" @default.
- W4281714913 countsByYear W42817149132022 @default.
- W4281714913 countsByYear W42817149132023 @default.
- W4281714913 crossrefType "journal-article" @default.
- W4281714913 hasAuthorship W4281714913A5003335763 @default.
- W4281714913 hasAuthorship W4281714913A5022181517 @default.
- W4281714913 hasAuthorship W4281714913A5048005515 @default.
- W4281714913 hasAuthorship W4281714913A5089048885 @default.
- W4281714913 hasBestOaLocation W42817149131 @default.
- W4281714913 hasConcept C11413529 @default.
- W4281714913 hasConcept C117765406 @default.
- W4281714913 hasConcept C119857082 @default.
- W4281714913 hasConcept C134306372 @default.
- W4281714913 hasConcept C141404830 @default.
- W4281714913 hasConcept C153180895 @default.
- W4281714913 hasConcept C153668964 @default.
- W4281714913 hasConcept C154945302 @default.
- W4281714913 hasConcept C17061570 @default.
- W4281714913 hasConcept C177148314 @default.
- W4281714913 hasConcept C33923547 @default.
- W4281714913 hasConcept C41008148 @default.
- W4281714913 hasConcept C50644808 @default.
- W4281714913 hasConcept C95623464 @default.
- W4281714913 hasConcept C95627357 @default.
- W4281714913 hasConceptScore W4281714913C11413529 @default.
- W4281714913 hasConceptScore W4281714913C117765406 @default.
- W4281714913 hasConceptScore W4281714913C119857082 @default.
- W4281714913 hasConceptScore W4281714913C134306372 @default.
- W4281714913 hasConceptScore W4281714913C141404830 @default.
- W4281714913 hasConceptScore W4281714913C153180895 @default.
- W4281714913 hasConceptScore W4281714913C153668964 @default.
- W4281714913 hasConceptScore W4281714913C154945302 @default.
- W4281714913 hasConceptScore W4281714913C17061570 @default.
- W4281714913 hasConceptScore W4281714913C177148314 @default.
- W4281714913 hasConceptScore W4281714913C33923547 @default.
- W4281714913 hasConceptScore W4281714913C41008148 @default.
- W4281714913 hasConceptScore W4281714913C50644808 @default.
- W4281714913 hasConceptScore W4281714913C95623464 @default.
- W4281714913 hasConceptScore W4281714913C95627357 @default.
- W4281714913 hasIssue "12" @default.
- W4281714913 hasLocation W42817149131 @default.
- W4281714913 hasOpenAccess W4281714913 @default.
- W4281714913 hasPrimaryLocation W42817149131 @default.
- W4281714913 hasRelatedWork W1987859285 @default.
- W4281714913 hasRelatedWork W1996541855 @default.
- W4281714913 hasRelatedWork W2003125512 @default.
- W4281714913 hasRelatedWork W2047166378 @default.
- W4281714913 hasRelatedWork W2086982548 @default.
- W4281714913 hasRelatedWork W2366506455 @default.
- W4281714913 hasRelatedWork W2563096758 @default.
- W4281714913 hasRelatedWork W2951715702 @default.
- W4281714913 hasRelatedWork W3212493609 @default.
- W4281714913 hasRelatedWork W4285046548 @default.
- W4281714913 hasVolume "12" @default.
- W4281714913 isParatext "false" @default.
- W4281714913 isRetracted "false" @default.
- W4281714913 workType "article" @default.