Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281718835> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4281718835 abstract "Physical Unclonable Functions (PUFs) are promising security primitives for resource-constrained network nodes. The XOR Arbiter PUF (XOR PUF or XPUF) is an intensively studied PUF invented to improve the security of the Arbiter PUF, probably the most lightweight delay-based PUF. Recently, highly powerful machine learning attack methods were discovered and were able to easily break large-sized XPUFs, which were highly secure against earlier machine learning attack methods. Component-differentially-challenged XPUFs (CDC-XPUFs) are XPUFs with different component PUFs receiving different challenges. Studies showed they were much more secure against machine learning attacks than the conventional XPUFs, whose component PUFs receive the same challenge. But these studies were all based on earlier machine learning attack methods, and hence it is not clear if CDC-XPUFs can remain secure under the recently discovered powerful attack methods. In this paper, the two current most powerful two machine learning methods for attacking XPUFs are adapted by fine-tuning the parameters of the two methods for CDC-XPUFs. Attack experiments using both simulated PUF data and silicon data generated from PUFs implemented on field-programmable gate array (FPGA) were carried out, and the experimental results showed that some previously secure CDC-XPUFs of certain circuit parameter values are no longer secure under the adapted new attack methods, while many more CDC-XPUFs of other circuit parameter values remain secure. Thus, our experimental attack study has re-defined the boundary between the secure region and the insecure region of the PUF circuit parameter space, providing PUF manufacturers and IoT security application developers with valuable information in choosing PUFs with secure parameter values." @default.
- W4281718835 created "2022-06-13" @default.
- W4281718835 creator A5003062703 @default.
- W4281718835 creator A5011533814 @default.
- W4281718835 creator A5025548702 @default.
- W4281718835 creator A5041388008 @default.
- W4281718835 creator A5064726643 @default.
- W4281718835 date "2022-06-02" @default.
- W4281718835 modified "2023-09-26" @default.
- W4281718835 title "A New Security Boundary of Component Differentially Challenged XOR PUFs Against Machine Learning Modeling Attacks" @default.
- W4281718835 doi "https://doi.org/10.48550/arxiv.2206.01314" @default.
- W4281718835 hasPublicationYear "2022" @default.
- W4281718835 type Work @default.
- W4281718835 citedByCount "0" @default.
- W4281718835 crossrefType "posted-content" @default.
- W4281718835 hasAuthorship W4281718835A5003062703 @default.
- W4281718835 hasAuthorship W4281718835A5011533814 @default.
- W4281718835 hasAuthorship W4281718835A5025548702 @default.
- W4281718835 hasAuthorship W4281718835A5041388008 @default.
- W4281718835 hasAuthorship W4281718835A5064726643 @default.
- W4281718835 hasBestOaLocation W42817188351 @default.
- W4281718835 hasConcept C121332964 @default.
- W4281718835 hasConcept C149635348 @default.
- W4281718835 hasConcept C154945302 @default.
- W4281718835 hasConcept C168167062 @default.
- W4281718835 hasConcept C2776576444 @default.
- W4281718835 hasConcept C2779971761 @default.
- W4281718835 hasConcept C38652104 @default.
- W4281718835 hasConcept C41008148 @default.
- W4281718835 hasConcept C42935608 @default.
- W4281718835 hasConcept C8643368 @default.
- W4281718835 hasConcept C9390403 @default.
- W4281718835 hasConcept C97355855 @default.
- W4281718835 hasConceptScore W4281718835C121332964 @default.
- W4281718835 hasConceptScore W4281718835C149635348 @default.
- W4281718835 hasConceptScore W4281718835C154945302 @default.
- W4281718835 hasConceptScore W4281718835C168167062 @default.
- W4281718835 hasConceptScore W4281718835C2776576444 @default.
- W4281718835 hasConceptScore W4281718835C2779971761 @default.
- W4281718835 hasConceptScore W4281718835C38652104 @default.
- W4281718835 hasConceptScore W4281718835C41008148 @default.
- W4281718835 hasConceptScore W4281718835C42935608 @default.
- W4281718835 hasConceptScore W4281718835C8643368 @default.
- W4281718835 hasConceptScore W4281718835C9390403 @default.
- W4281718835 hasConceptScore W4281718835C97355855 @default.
- W4281718835 hasLocation W42817188351 @default.
- W4281718835 hasLocation W42817188352 @default.
- W4281718835 hasOpenAccess W4281718835 @default.
- W4281718835 hasPrimaryLocation W42817188351 @default.
- W4281718835 hasRelatedWork W1544967376 @default.
- W4281718835 hasRelatedWork W2156958626 @default.
- W4281718835 hasRelatedWork W2244790057 @default.
- W4281718835 hasRelatedWork W2373258662 @default.
- W4281718835 hasRelatedWork W2945803983 @default.
- W4281718835 hasRelatedWork W2994310634 @default.
- W4281718835 hasRelatedWork W3004652011 @default.
- W4281718835 hasRelatedWork W3186471288 @default.
- W4281718835 hasRelatedWork W4225299998 @default.
- W4281718835 hasRelatedWork W4379473280 @default.
- W4281718835 isParatext "false" @default.
- W4281718835 isRetracted "false" @default.
- W4281718835 workType "article" @default.