Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281727527> ?p ?o ?g. }
- W4281727527 abstract "Abstract This paper demonstrates the feasibility of blowing and suction for flow control based on the computational fluid dynamics (CFD) simulations at a low Reynolds number flows. The effects of blowing and suction position, and the blowing and suction mass flowrate, and on the flow control are presented in this paper. The optimal conditions for suppressing the wake of the cylinder are investigated by examining the flow separation and the near wake region; analyzing the aerodynamic force (lift and drag) fluctuations using the fast Fourier transform (FFT) to separate the effects of small-scale turbulent structures in the wake region. A method for stochastic analysis using machine learning techniques is proposed. Three different novel machine learning methods were applied to CFD results to predict the variation in drag coefficient due to the vortex shedding. Although, the prediction power of all the methods utilized is in the acceptable accuracy range, the Gaussian process regression (GPR) method is more accurate with an R2(coefficient of determination) > 0.95. The results indicate that by optimizing the blowing and suction parameters like mass flowrate, slot location, and the slot configuration, up to 20% reduction can be achieved in the drag coefficient." @default.
- W4281727527 created "2022-06-13" @default.
- W4281727527 creator A5031822338 @default.
- W4281727527 creator A5065637291 @default.
- W4281727527 creator A5084716248 @default.
- W4281727527 date "2022-07-21" @default.
- W4281727527 modified "2023-10-14" @default.
- W4281727527 title "Machine Learning Based Developing Flow Control Technique Over Circular Cylinders" @default.
- W4281727527 cites W1526465195 @default.
- W4281727527 cites W1599208084 @default.
- W4281727527 cites W1967804325 @default.
- W4281727527 cites W1970990954 @default.
- W4281727527 cites W1995341919 @default.
- W4281727527 cites W2003577149 @default.
- W4281727527 cites W2029452450 @default.
- W4281727527 cites W2030280402 @default.
- W4281727527 cites W2033529726 @default.
- W4281727527 cites W2047600945 @default.
- W4281727527 cites W2064105113 @default.
- W4281727527 cites W2067750394 @default.
- W4281727527 cites W2069558199 @default.
- W4281727527 cites W2087106691 @default.
- W4281727527 cites W2098522181 @default.
- W4281727527 cites W2105999135 @default.
- W4281727527 cites W2116841056 @default.
- W4281727527 cites W2128711114 @default.
- W4281727527 cites W2156909104 @default.
- W4281727527 cites W2158200804 @default.
- W4281727527 cites W2160248643 @default.
- W4281727527 cites W2170831028 @default.
- W4281727527 cites W2333950380 @default.
- W4281727527 cites W2728741123 @default.
- W4281727527 cites W2758160981 @default.
- W4281727527 cites W2772101560 @default.
- W4281727527 cites W2908295285 @default.
- W4281727527 cites W2911964244 @default.
- W4281727527 cites W2923838550 @default.
- W4281727527 cites W2939562412 @default.
- W4281727527 cites W2972971428 @default.
- W4281727527 cites W2977115701 @default.
- W4281727527 cites W2981993907 @default.
- W4281727527 cites W2990155470 @default.
- W4281727527 cites W3002809634 @default.
- W4281727527 cites W3008531048 @default.
- W4281727527 cites W3014496927 @default.
- W4281727527 cites W3035495712 @default.
- W4281727527 cites W3046554384 @default.
- W4281727527 cites W3098508626 @default.
- W4281727527 cites W3144889326 @default.
- W4281727527 cites W4251800481 @default.
- W4281727527 cites W4376453520 @default.
- W4281727527 doi "https://doi.org/10.1115/1.4054689" @default.
- W4281727527 hasPublicationYear "2022" @default.
- W4281727527 type Work @default.
- W4281727527 citedByCount "1" @default.
- W4281727527 countsByYear W42817275272023 @default.
- W4281727527 crossrefType "journal-article" @default.
- W4281727527 hasAuthorship W4281727527A5031822338 @default.
- W4281727527 hasAuthorship W4281727527A5065637291 @default.
- W4281727527 hasAuthorship W4281727527A5084716248 @default.
- W4281727527 hasConcept C11413529 @default.
- W4281727527 hasConcept C119857082 @default.
- W4281727527 hasConcept C121332964 @default.
- W4281727527 hasConcept C127413603 @default.
- W4281727527 hasConcept C13393347 @default.
- W4281727527 hasConcept C139002025 @default.
- W4281727527 hasConcept C154945302 @default.
- W4281727527 hasConcept C1633027 @default.
- W4281727527 hasConcept C178760647 @default.
- W4281727527 hasConcept C182748727 @default.
- W4281727527 hasConcept C186766456 @default.
- W4281727527 hasConcept C196558001 @default.
- W4281727527 hasConcept C201923624 @default.
- W4281727527 hasConcept C23795335 @default.
- W4281727527 hasConcept C2775924081 @default.
- W4281727527 hasConcept C41008148 @default.
- W4281727527 hasConcept C47446073 @default.
- W4281727527 hasConcept C48939323 @default.
- W4281727527 hasConcept C57879066 @default.
- W4281727527 hasConcept C72117827 @default.
- W4281727527 hasConcept C72921944 @default.
- W4281727527 hasConcept C75172450 @default.
- W4281727527 hasConcept C76155785 @default.
- W4281727527 hasConcept C78519656 @default.
- W4281727527 hasConceptScore W4281727527C11413529 @default.
- W4281727527 hasConceptScore W4281727527C119857082 @default.
- W4281727527 hasConceptScore W4281727527C121332964 @default.
- W4281727527 hasConceptScore W4281727527C127413603 @default.
- W4281727527 hasConceptScore W4281727527C13393347 @default.
- W4281727527 hasConceptScore W4281727527C139002025 @default.
- W4281727527 hasConceptScore W4281727527C154945302 @default.
- W4281727527 hasConceptScore W4281727527C1633027 @default.
- W4281727527 hasConceptScore W4281727527C178760647 @default.
- W4281727527 hasConceptScore W4281727527C182748727 @default.
- W4281727527 hasConceptScore W4281727527C186766456 @default.
- W4281727527 hasConceptScore W4281727527C196558001 @default.
- W4281727527 hasConceptScore W4281727527C201923624 @default.
- W4281727527 hasConceptScore W4281727527C23795335 @default.
- W4281727527 hasConceptScore W4281727527C2775924081 @default.
- W4281727527 hasConceptScore W4281727527C41008148 @default.