Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281727839> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4281727839 endingPage "897" @default.
- W4281727839 startingPage "875" @default.
- W4281727839 abstract "Abstract Quality and quantity of streamflow are crucial components in the management and control of water resources according which are challenging due to their nonstationarity and uncertainty path. This paper presented an ensemble data pre-processing-based machine learning (ML) algorithm for the decision-support of water resource management and water pollution control at the watershed scale due to the nonlinear path of streamflow. In the proposed hybrid model, a new time–frequency analysis algorithm, variational mode decomposition (VMD), is implemented to deal with the nonlinearity and nonstationary of a streamflow process. The VMD is exploited to decompose the original water quality and quantity series into a series of intrinsic mode functions (IMFs) with different frequencies. Therefore, an ensemble algorithm, bootstrap aggregating (bagging) algorithm is coupled with two common ML, reduced error pruning tree (REPT) and random forest (RF), to predict all the decomposed modes using VMD. Then, in order to reduce the variance among the base classifiers of the proposed ML, a bootstrap aggregation technique was recruited. Finally, the predicting value of the original water quality and quantity series is obtained by adding up the predicting results of all the decomposed modes. The proposed hybrid decomposition–ensemble model has been applied to two stations in Karoon River, Iran. Results obtained from this study indicate that the proposed hybrid decomposition–ensemble model can capture the nonlinear characteristics of a streamflow process in terms of water quality and quantity simultaneously and thus provide more accurate predicting results compared with those models without data frequency decomposing." @default.
- W4281727839 created "2022-06-13" @default.
- W4281727839 creator A5024198373 @default.
- W4281727839 creator A5053772900 @default.
- W4281727839 creator A5066823761 @default.
- W4281727839 date "2022-06-07" @default.
- W4281727839 modified "2023-10-14" @default.
- W4281727839 title "Insights into enhanced machine learning techniques for surface water quantity and quality prediction based on data pre-processing algorithms" @default.
- W4281727839 doi "https://doi.org/10.2166/hydro.2022.022" @default.
- W4281727839 hasPublicationYear "2022" @default.
- W4281727839 type Work @default.
- W4281727839 citedByCount "2" @default.
- W4281727839 countsByYear W42817278392022 @default.
- W4281727839 countsByYear W42817278392023 @default.
- W4281727839 crossrefType "journal-article" @default.
- W4281727839 hasAuthorship W4281727839A5024198373 @default.
- W4281727839 hasAuthorship W4281727839A5053772900 @default.
- W4281727839 hasAuthorship W4281727839A5066823761 @default.
- W4281727839 hasBestOaLocation W42817278391 @default.
- W4281727839 hasConcept C108010975 @default.
- W4281727839 hasConcept C11413529 @default.
- W4281727839 hasConcept C121332964 @default.
- W4281727839 hasConcept C124101348 @default.
- W4281727839 hasConcept C126645576 @default.
- W4281727839 hasConcept C143724316 @default.
- W4281727839 hasConcept C151730666 @default.
- W4281727839 hasConcept C154945302 @default.
- W4281727839 hasConcept C158622935 @default.
- W4281727839 hasConcept C18903297 @default.
- W4281727839 hasConcept C205649164 @default.
- W4281727839 hasConcept C2780797713 @default.
- W4281727839 hasConcept C41008148 @default.
- W4281727839 hasConcept C45942800 @default.
- W4281727839 hasConcept C53739315 @default.
- W4281727839 hasConcept C58640448 @default.
- W4281727839 hasConcept C62520636 @default.
- W4281727839 hasConcept C6557445 @default.
- W4281727839 hasConcept C84525736 @default.
- W4281727839 hasConcept C86803240 @default.
- W4281727839 hasConceptScore W4281727839C108010975 @default.
- W4281727839 hasConceptScore W4281727839C11413529 @default.
- W4281727839 hasConceptScore W4281727839C121332964 @default.
- W4281727839 hasConceptScore W4281727839C124101348 @default.
- W4281727839 hasConceptScore W4281727839C126645576 @default.
- W4281727839 hasConceptScore W4281727839C143724316 @default.
- W4281727839 hasConceptScore W4281727839C151730666 @default.
- W4281727839 hasConceptScore W4281727839C154945302 @default.
- W4281727839 hasConceptScore W4281727839C158622935 @default.
- W4281727839 hasConceptScore W4281727839C18903297 @default.
- W4281727839 hasConceptScore W4281727839C205649164 @default.
- W4281727839 hasConceptScore W4281727839C2780797713 @default.
- W4281727839 hasConceptScore W4281727839C41008148 @default.
- W4281727839 hasConceptScore W4281727839C45942800 @default.
- W4281727839 hasConceptScore W4281727839C53739315 @default.
- W4281727839 hasConceptScore W4281727839C58640448 @default.
- W4281727839 hasConceptScore W4281727839C62520636 @default.
- W4281727839 hasConceptScore W4281727839C6557445 @default.
- W4281727839 hasConceptScore W4281727839C84525736 @default.
- W4281727839 hasConceptScore W4281727839C86803240 @default.
- W4281727839 hasIssue "4" @default.
- W4281727839 hasLocation W42817278391 @default.
- W4281727839 hasOpenAccess W4281727839 @default.
- W4281727839 hasPrimaryLocation W42817278391 @default.
- W4281727839 hasRelatedWork W2127595245 @default.
- W4281727839 hasRelatedWork W2154187553 @default.
- W4281727839 hasRelatedWork W2160080034 @default.
- W4281727839 hasRelatedWork W2227733783 @default.
- W4281727839 hasRelatedWork W2307999539 @default.
- W4281727839 hasRelatedWork W2348425918 @default.
- W4281727839 hasRelatedWork W2541327136 @default.
- W4281727839 hasRelatedWork W2548293269 @default.
- W4281727839 hasRelatedWork W3033486204 @default.
- W4281727839 hasRelatedWork W3047144510 @default.
- W4281727839 hasVolume "24" @default.
- W4281727839 isParatext "false" @default.
- W4281727839 isRetracted "false" @default.
- W4281727839 workType "article" @default.