Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281728364> ?p ?o ?g. }
- W4281728364 endingPage "720" @default.
- W4281728364 startingPage "710" @default.
- W4281728364 abstract "Summary The formation of deposits is a very common issue in oil and gas pipeline transportation systems. Such sediments, mainly wax and paraffine for crude oil, or hydrates and water for gas, progressively reduce the free cross-sectional area of the pipe, leading in some cases to the complete occlusion of the conduit. The overall result is a decrease in the transportation performance, with negative economic, environmental, and safety consequences. To prevent this issue, the amount of inner deposits must be continuously and accurately monitored, such that the corresponding cleaning procedures can be performed when necessary. Currently, the former operation is still dictated by best-practice rules pertaining to preventive or reactive approaches, yet the demand from the industry is for predictive solutions that can be deployed online for real-time monitoring applications. The paper moves toward this direction by presenting a machine learning methodology that leverages pressure measurements to perform online monitoring of the inner deposits in crude oil trunklines. The key point is that the attenuation of pressure transients within the fluid is dependent on the free cross-sectional area of the pipe. Pressure signals, collected from two or more distinct locations along a pipeline, can therefore be exploited to estimate and track in real time the presence and thickness of the deposits. Several statistical indicators, derived from the attenuation of such pressure transients between adjacent acquisition points, are fed to a data-driven regression algorithm that automatically outputs a numeric indicator representing the amount of inner pipe debris. The procedure is applied to the pressure measurements collected for one and a half years on discrete points at a relative distance of 40 and 60 km along an oil pipeline in Italy (100 km length, 16-in. inner diameter pipes). The availability of historical data prepipe and postpipe cleaning campaigns further enriches the proposed data-driven approach. Experimental results demonstrate that the proposed predictive monitoring strategy is capable of tracking the conditions of the entire conduit and of individual pipeline sections, thus determining which portion of the line is subject to the highest occlusion levels. In addition, our methodology allows for real-time acquisition and processing of data, thus enabling the opportunity for online monitoring. Prediction accuracy is assessed by evaluating the typical metrics used in the statistical analysis of regression problems." @default.
- W4281728364 created "2022-06-13" @default.
- W4281728364 creator A5001780078 @default.
- W4281728364 creator A5028533253 @default.
- W4281728364 creator A5070685760 @default.
- W4281728364 creator A5090439697 @default.
- W4281728364 date "2022-06-03" @default.
- W4281728364 modified "2023-09-28" @default.
- W4281728364 title "Online Monitoring of Inner Deposits in Crude Oil Pipelines" @default.
- W4281728364 cites W1992043517 @default.
- W4281728364 cites W1994606749 @default.
- W4281728364 cites W1995376165 @default.
- W4281728364 cites W1995398401 @default.
- W4281728364 cites W2006978217 @default.
- W4281728364 cites W2026896582 @default.
- W4281728364 cites W2051361163 @default.
- W4281728364 cites W2051740165 @default.
- W4281728364 cites W2051812435 @default.
- W4281728364 cites W2056132907 @default.
- W4281728364 cites W2065801214 @default.
- W4281728364 cites W2074275415 @default.
- W4281728364 cites W2074699920 @default.
- W4281728364 cites W2089222502 @default.
- W4281728364 cites W2097954580 @default.
- W4281728364 cites W2134920341 @default.
- W4281728364 cites W2157886172 @default.
- W4281728364 cites W2335744232 @default.
- W4281728364 cites W2528731286 @default.
- W4281728364 cites W2779615738 @default.
- W4281728364 cites W2794284271 @default.
- W4281728364 cites W2901592586 @default.
- W4281728364 cites W2902544712 @default.
- W4281728364 cites W2921780340 @default.
- W4281728364 cites W2962873667 @default.
- W4281728364 cites W2967449187 @default.
- W4281728364 cites W2985579521 @default.
- W4281728364 cites W3002640470 @default.
- W4281728364 cites W3012393257 @default.
- W4281728364 cites W3037232495 @default.
- W4281728364 cites W3095035454 @default.
- W4281728364 cites W3130440239 @default.
- W4281728364 cites W3135271231 @default.
- W4281728364 cites W3137355517 @default.
- W4281728364 cites W3138374927 @default.
- W4281728364 cites W3155518581 @default.
- W4281728364 cites W3155796299 @default.
- W4281728364 cites W3196747869 @default.
- W4281728364 cites W4236137412 @default.
- W4281728364 doi "https://doi.org/10.2118/209825-pa" @default.
- W4281728364 hasPublicationYear "2022" @default.
- W4281728364 type Work @default.
- W4281728364 citedByCount "0" @default.
- W4281728364 crossrefType "journal-article" @default.
- W4281728364 hasAuthorship W4281728364A5001780078 @default.
- W4281728364 hasAuthorship W4281728364A5028533253 @default.
- W4281728364 hasAuthorship W4281728364A5070685760 @default.
- W4281728364 hasAuthorship W4281728364A5090439697 @default.
- W4281728364 hasBestOaLocation W42817283641 @default.
- W4281728364 hasConcept C120665830 @default.
- W4281728364 hasConcept C121332964 @default.
- W4281728364 hasConcept C127313418 @default.
- W4281728364 hasConcept C127413603 @default.
- W4281728364 hasConcept C175309249 @default.
- W4281728364 hasConcept C184652730 @default.
- W4281728364 hasConcept C2987168347 @default.
- W4281728364 hasConcept C39432304 @default.
- W4281728364 hasConcept C41008148 @default.
- W4281728364 hasConcept C43521106 @default.
- W4281728364 hasConcept C78519656 @default.
- W4281728364 hasConcept C78762247 @default.
- W4281728364 hasConcept C87717796 @default.
- W4281728364 hasConceptScore W4281728364C120665830 @default.
- W4281728364 hasConceptScore W4281728364C121332964 @default.
- W4281728364 hasConceptScore W4281728364C127313418 @default.
- W4281728364 hasConceptScore W4281728364C127413603 @default.
- W4281728364 hasConceptScore W4281728364C175309249 @default.
- W4281728364 hasConceptScore W4281728364C184652730 @default.
- W4281728364 hasConceptScore W4281728364C2987168347 @default.
- W4281728364 hasConceptScore W4281728364C39432304 @default.
- W4281728364 hasConceptScore W4281728364C41008148 @default.
- W4281728364 hasConceptScore W4281728364C43521106 @default.
- W4281728364 hasConceptScore W4281728364C78519656 @default.
- W4281728364 hasConceptScore W4281728364C78762247 @default.
- W4281728364 hasConceptScore W4281728364C87717796 @default.
- W4281728364 hasIssue "04" @default.
- W4281728364 hasLocation W42817283641 @default.
- W4281728364 hasLocation W42817283642 @default.
- W4281728364 hasOpenAccess W4281728364 @default.
- W4281728364 hasPrimaryLocation W42817283641 @default.
- W4281728364 hasRelatedWork W2081355846 @default.
- W4281728364 hasRelatedWork W2354656377 @default.
- W4281728364 hasRelatedWork W2356885303 @default.
- W4281728364 hasRelatedWork W2360545571 @default.
- W4281728364 hasRelatedWork W2384053832 @default.
- W4281728364 hasRelatedWork W2386789060 @default.
- W4281728364 hasRelatedWork W2389888402 @default.
- W4281728364 hasRelatedWork W2391698025 @default.
- W4281728364 hasRelatedWork W587884796 @default.