Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281728993> ?p ?o ?g. }
- W4281728993 endingPage "12" @default.
- W4281728993 startingPage "1" @default.
- W4281728993 abstract "In this paper, several recurrent neural networks (RNNs) for solving the L1-minimization problem are proposed. First, a one-layer RNN based on the hyperbolic tangent function and the projection matrix is designed. In addition, the stability and global convergence of the previously presented RNN are proved by the Lyapunov method. Then, the sliding mode control technique is introduced into the former RNN to design finite-time RNN (FTRNN). Under the condition that the projection matrix satisfies the Restricted Isometry Property (RIP), a suitable Lyapunov function is constructed to prove that the FTRNN is stable in the Lyapunov sense and has the finite-time convergence property. Finally, we make a comparison of the proposed RNN and FTRNN with the existing RNNs. To achieve this, we implement experiments for sparse signal reconstruction and image reconstruction. The results further demonstrate the effectiveness and superior performance of the proposed RNN and FTRNN." @default.
- W4281728993 created "2022-06-13" @default.
- W4281728993 creator A5001504963 @default.
- W4281728993 creator A5074290686 @default.
- W4281728993 creator A5081276827 @default.
- W4281728993 date "2022-09-01" @default.
- W4281728993 modified "2023-10-16" @default.
- W4281728993 title "Sparse signal reconstruction via recurrent neural networks with hyperbolic tangent function" @default.
- W4281728993 cites W1971536112 @default.
- W4281728993 cites W1976709621 @default.
- W4281728993 cites W1988901237 @default.
- W4281728993 cites W1991693778 @default.
- W4281728993 cites W1993962865 @default.
- W4281728993 cites W2015418199 @default.
- W4281728993 cites W2028781966 @default.
- W4281728993 cites W2047719998 @default.
- W4281728993 cites W2056157083 @default.
- W4281728993 cites W2093922090 @default.
- W4281728993 cites W2098518655 @default.
- W4281728993 cites W2100543212 @default.
- W4281728993 cites W2105454037 @default.
- W4281728993 cites W2105504486 @default.
- W4281728993 cites W2109449402 @default.
- W4281728993 cites W2119667497 @default.
- W4281728993 cites W2129114382 @default.
- W4281728993 cites W2130278867 @default.
- W4281728993 cites W2145096794 @default.
- W4281728993 cites W2169555996 @default.
- W4281728993 cites W2171534739 @default.
- W4281728993 cites W2245759308 @default.
- W4281728993 cites W2284760372 @default.
- W4281728993 cites W2512486500 @default.
- W4281728993 cites W2536599074 @default.
- W4281728993 cites W2615891536 @default.
- W4281728993 cites W2752388197 @default.
- W4281728993 cites W2934255510 @default.
- W4281728993 cites W3032869534 @default.
- W4281728993 cites W3106359998 @default.
- W4281728993 cites W3174814448 @default.
- W4281728993 cites W3191541698 @default.
- W4281728993 cites W3213542042 @default.
- W4281728993 cites W4241368925 @default.
- W4281728993 doi "https://doi.org/10.1016/j.neunet.2022.05.022" @default.
- W4281728993 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35687969" @default.
- W4281728993 hasPublicationYear "2022" @default.
- W4281728993 type Work @default.
- W4281728993 citedByCount "1" @default.
- W4281728993 countsByYear W42817289932023 @default.
- W4281728993 crossrefType "journal-article" @default.
- W4281728993 hasAuthorship W4281728993A5001504963 @default.
- W4281728993 hasAuthorship W4281728993A5074290686 @default.
- W4281728993 hasAuthorship W4281728993A5081276827 @default.
- W4281728993 hasConcept C11413529 @default.
- W4281728993 hasConcept C121332964 @default.
- W4281728993 hasConcept C124851039 @default.
- W4281728993 hasConcept C126255220 @default.
- W4281728993 hasConcept C147168706 @default.
- W4281728993 hasConcept C154945302 @default.
- W4281728993 hasConcept C158622935 @default.
- W4281728993 hasConcept C162324750 @default.
- W4281728993 hasConcept C17902559 @default.
- W4281728993 hasConcept C2775924081 @default.
- W4281728993 hasConcept C2777303404 @default.
- W4281728993 hasConcept C33923547 @default.
- W4281728993 hasConcept C41008148 @default.
- W4281728993 hasConcept C47446073 @default.
- W4281728993 hasConcept C50522688 @default.
- W4281728993 hasConcept C50644808 @default.
- W4281728993 hasConcept C57493831 @default.
- W4281728993 hasConcept C60640748 @default.
- W4281728993 hasConcept C62520636 @default.
- W4281728993 hasConceptScore W4281728993C11413529 @default.
- W4281728993 hasConceptScore W4281728993C121332964 @default.
- W4281728993 hasConceptScore W4281728993C124851039 @default.
- W4281728993 hasConceptScore W4281728993C126255220 @default.
- W4281728993 hasConceptScore W4281728993C147168706 @default.
- W4281728993 hasConceptScore W4281728993C154945302 @default.
- W4281728993 hasConceptScore W4281728993C158622935 @default.
- W4281728993 hasConceptScore W4281728993C162324750 @default.
- W4281728993 hasConceptScore W4281728993C17902559 @default.
- W4281728993 hasConceptScore W4281728993C2775924081 @default.
- W4281728993 hasConceptScore W4281728993C2777303404 @default.
- W4281728993 hasConceptScore W4281728993C33923547 @default.
- W4281728993 hasConceptScore W4281728993C41008148 @default.
- W4281728993 hasConceptScore W4281728993C47446073 @default.
- W4281728993 hasConceptScore W4281728993C50522688 @default.
- W4281728993 hasConceptScore W4281728993C50644808 @default.
- W4281728993 hasConceptScore W4281728993C57493831 @default.
- W4281728993 hasConceptScore W4281728993C60640748 @default.
- W4281728993 hasConceptScore W4281728993C62520636 @default.
- W4281728993 hasFunder F4320321001 @default.
- W4281728993 hasFunder F4320335787 @default.
- W4281728993 hasLocation W42817289931 @default.
- W4281728993 hasLocation W42817289932 @default.
- W4281728993 hasOpenAccess W4281728993 @default.
- W4281728993 hasPrimaryLocation W42817289931 @default.
- W4281728993 hasRelatedWork W1495169190 @default.
- W4281728993 hasRelatedWork W1533959244 @default.