Matches in SemOpenAlex for { <https://semopenalex.org/work/W4281731569> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4281731569 endingPage "365" @default.
- W4281731569 startingPage "350" @default.
- W4281731569 abstract "Since the advent of deep learning based Natural Language Processing (NLP), diverse domains of human society have benefited form automation and the resultant increment in efficiency. Law and order are, undoubtedly, crucial for the proper functioning of society; for without law there would be chaos, failing to offer equality to everyone. The legal domain being such a vital field, the incorporation of NLP into its workings has drawn attention in many research studies. This study attempts to leverage NLP into the task of extracting legal parties from legal opinion text documents. This task is of high importance given the significance of existing legal cases on contemporary cases under the legal practice, textit{case law}. This study proposes a novel deep learning methodology which can be effectively used to resolve the problem of identifying legal party members in legal documents. We present two models here, where the first is a BRNN model to detect whether an entity is a legal party or not, and a second, a modification of the same neural network, to classify the thus identified entities into petitioner and defendant classes. Furthermore, in this study, we introduce a novel data set which is annotated with legal party information by an expert in the legal domain. With the use of the said dataset, we have trained and evaluated our models where the experiments carried out support satisfactory performance of our solution. The deep learning model we hereby propose, provides a benchmark for the legal party identification task on this data set. Evaluations for the solution presented in the paper show that our system has 90.89% precision and 91.69% recall for legal party extraction from an unseen paragraph from a legal document. As for the classification of petitioners and defendants, we show that GRU-512 obtains the highest F1 score." @default.
- W4281731569 created "2022-06-13" @default.
- W4281731569 creator A5011613101 @default.
- W4281731569 creator A5025331455 @default.
- W4281731569 creator A5027662284 @default.
- W4281731569 creator A5060065532 @default.
- W4281731569 creator A5083391255 @default.
- W4281731569 date "2022-08-01" @default.
- W4281731569 modified "2023-09-25" @default.
- W4281731569 title "Legal Party Extraction from Legal Opinion Texts Using Recurrent Deep Neural Networks" @default.
- W4281731569 doi "https://doi.org/10.26421/jdi3.3-4" @default.
- W4281731569 hasPublicationYear "2022" @default.
- W4281731569 type Work @default.
- W4281731569 citedByCount "0" @default.
- W4281731569 crossrefType "journal-article" @default.
- W4281731569 hasAuthorship W4281731569A5011613101 @default.
- W4281731569 hasAuthorship W4281731569A5025331455 @default.
- W4281731569 hasAuthorship W4281731569A5027662284 @default.
- W4281731569 hasAuthorship W4281731569A5060065532 @default.
- W4281731569 hasAuthorship W4281731569A5083391255 @default.
- W4281731569 hasBestOaLocation W42817315691 @default.
- W4281731569 hasConcept C108583219 @default.
- W4281731569 hasConcept C127413603 @default.
- W4281731569 hasConcept C149209484 @default.
- W4281731569 hasConcept C153083717 @default.
- W4281731569 hasConcept C154945302 @default.
- W4281731569 hasConcept C162723807 @default.
- W4281731569 hasConcept C167633797 @default.
- W4281731569 hasConcept C170692843 @default.
- W4281731569 hasConcept C17744445 @default.
- W4281731569 hasConcept C199539241 @default.
- W4281731569 hasConcept C201995342 @default.
- W4281731569 hasConcept C202444582 @default.
- W4281731569 hasConcept C204321447 @default.
- W4281731569 hasConcept C2779135771 @default.
- W4281731569 hasConcept C2780451532 @default.
- W4281731569 hasConcept C2993995455 @default.
- W4281731569 hasConcept C33923547 @default.
- W4281731569 hasConcept C41008148 @default.
- W4281731569 hasConcept C522695570 @default.
- W4281731569 hasConcept C66402592 @default.
- W4281731569 hasConcept C75011936 @default.
- W4281731569 hasConcept C9652623 @default.
- W4281731569 hasConceptScore W4281731569C108583219 @default.
- W4281731569 hasConceptScore W4281731569C127413603 @default.
- W4281731569 hasConceptScore W4281731569C149209484 @default.
- W4281731569 hasConceptScore W4281731569C153083717 @default.
- W4281731569 hasConceptScore W4281731569C154945302 @default.
- W4281731569 hasConceptScore W4281731569C162723807 @default.
- W4281731569 hasConceptScore W4281731569C167633797 @default.
- W4281731569 hasConceptScore W4281731569C170692843 @default.
- W4281731569 hasConceptScore W4281731569C17744445 @default.
- W4281731569 hasConceptScore W4281731569C199539241 @default.
- W4281731569 hasConceptScore W4281731569C201995342 @default.
- W4281731569 hasConceptScore W4281731569C202444582 @default.
- W4281731569 hasConceptScore W4281731569C204321447 @default.
- W4281731569 hasConceptScore W4281731569C2779135771 @default.
- W4281731569 hasConceptScore W4281731569C2780451532 @default.
- W4281731569 hasConceptScore W4281731569C2993995455 @default.
- W4281731569 hasConceptScore W4281731569C33923547 @default.
- W4281731569 hasConceptScore W4281731569C41008148 @default.
- W4281731569 hasConceptScore W4281731569C522695570 @default.
- W4281731569 hasConceptScore W4281731569C66402592 @default.
- W4281731569 hasConceptScore W4281731569C75011936 @default.
- W4281731569 hasConceptScore W4281731569C9652623 @default.
- W4281731569 hasIssue "3" @default.
- W4281731569 hasLocation W42817315691 @default.
- W4281731569 hasOpenAccess W4281731569 @default.
- W4281731569 hasPrimaryLocation W42817315691 @default.
- W4281731569 hasRelatedWork W1964330895 @default.
- W4281731569 hasRelatedWork W2164054100 @default.
- W4281731569 hasRelatedWork W2382087400 @default.
- W4281731569 hasRelatedWork W2769886556 @default.
- W4281731569 hasRelatedWork W2993873509 @default.
- W4281731569 hasRelatedWork W3024517519 @default.
- W4281731569 hasRelatedWork W3127045175 @default.
- W4281731569 hasRelatedWork W4220740160 @default.
- W4281731569 hasRelatedWork W4281731569 @default.
- W4281731569 hasRelatedWork W4294908186 @default.
- W4281731569 hasVolume "3" @default.
- W4281731569 isParatext "false" @default.
- W4281731569 isRetracted "false" @default.
- W4281731569 workType "article" @default.